鉅大LARGE | 點擊量:825次 | 2019年10月17日
東京理科大學(xué)Idemoto教授團隊合成新型電極材料
(圖片來源:東京理科大學(xué))
據(jù)外媒報道,現(xiàn)代生活對電的依賴越來越強,而對電力的不斷需求也使得人們對更環(huán)保、更便攜的能源需求越來越高。盡管風(fēng)能和太陽能電池板是非常有前景的替代能源,但是由于此類能源的產(chǎn)量會受外部因素影響,因而非常不可靠。因此,從能源配置和經(jīng)濟角度來看,高能量的二次電池(可充電電池或蓄電池)才是未來的發(fā)展方向。東京理科大學(xué)(TokyoUniversityofScience)的Idemoto教授帶領(lǐng)一組研究員,通過合成一種新型電極材料(金屬化合物),成功逆轉(zhuǎn)了離子的化學(xué)反應(yīng),解決了能源的浪費問題,為下一代可充電鎂電池的生產(chǎn)奠定了重要基礎(chǔ)。研究人員對該發(fā)現(xiàn)非常樂觀,表示:“我們合成了一種巖鹽,具有作為下一代二次電池正極材料的巨大潛力。”
電池是最受歡迎的便攜式能源,由三個基本部件組成–陽極、陰極和電解液,該三部分相互發(fā)生化學(xué)反應(yīng),陽極產(chǎn)生額外的電子(氧化),電子被陰極吸收(還原),從而產(chǎn)生氧化還原反應(yīng)。由于電解液抑制了陽極和陰極之間的電子流動,電子會優(yōu)先在外部電路流動,從而導(dǎo)致電流或“電”流動。當(dāng)陰極/陽極中的材料不能再吸收/脫落電子時,電池就“死了”。
但是,有些材料利用反向運行的外部電力,能夠逆轉(zhuǎn)此類化學(xué)反應(yīng),從而使材料回到原來的狀態(tài),此類可充電電池即手機、平板電腦和電動汽車等設(shè)備中的電池。
東京理科大學(xué)的Idemoto教授及其同事合成了取代鈷的MgNiO2材料,有潛力成為新型陰極材料。Idemoto教授表示:“我們專注于使用多價鎂離子作為可移動離子的可充電鎂電池,有望實現(xiàn)能量密度高的下一代可充電電池。”最近,由于鎂電池毒性低、容易實現(xiàn)逆轉(zhuǎn)反應(yīng),使人們對利用鎂作為高能量密度可充電電池的陽極材料產(chǎn)生了極大的興趣。但是,由于缺乏合適的互補型陰極和電解液,很難實現(xiàn)。
在標(biāo)準(zhǔn)實驗室技術(shù)的基礎(chǔ)上,研究人員利用“反向共沉淀法”合成了此種新型鹽,而且可從水溶液中提取此種新型巖鹽。為了研究萃取鹽的結(jié)構(gòu)和晶格成像,研究人員采用了中子和同步X射線光譜學(xué),換句話說,他們研究了粉末樣品在中子或x射線照射下產(chǎn)生的衍射圖樣,同時,對巖鹽種類進行理論計算和模擬,此類巖鹽具有正極材料所需的“充放電行為”,使得他們能夠根據(jù)生成的100個對稱不同候選結(jié)構(gòu)中能量最穩(wěn)定的結(jié)構(gòu),來確定鎂、鎳和鈷正離子在巖鹽結(jié)構(gòu)中的排列。
除了結(jié)構(gòu)分析,研究人員還用三極電池和已知的參考電極在各種條件下進行充放電測試,以了解巖鹽作為鎂充電電池正極材料的電化學(xué)性能,發(fā)現(xiàn)可以根據(jù)鎂的成分和鎳/鈷的比例來控制電池的特性。進行的結(jié)構(gòu)和電化學(xué)分析使研究人員能夠展示巖鹽可作為正極材料,以及在不同環(huán)境下具有可靠性。
目前,二次電池行業(yè)主要以鋰離子電池為主,在汽車和便攜式設(shè)備中用于電力存儲。但是,此類電池的能量密度和電力存儲能力有限。然而,Idemoto教授表示,新型二次鎂電池作為高能量密度的二次電池,有能力替代鋰離子電池。