黄网站免费现在看_2021日韩欧美一级黄片_天天看视频完全免费_98色婷婷在线

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

使用TinySwitch II實現開關電源優(yōu)化的電路設計

鉅大LARGE  |  點擊量:1130次  |  2020年05月18日  

使用TinySwitchII便于實現開關電源的優(yōu)化設計。由于其開關頻率提高到132kHz,因此高頻變壓器允許采用EE13或EF12.6小型化磁芯,并達到很高的電源效率。TinySwitchII具有頻率抖動特性,僅用一只電感(在輸出功率小于3W或可接受的較低效率時,還可用兩個小電阻)和兩只電容,即可進行EMI濾波。即使在短路條件下,也不要使用大功率整流管。做具有恒壓/恒流特性的充電器時,TinySwitchII能直接從輸入高壓中獲取能量,不要反饋繞組,并且即使輸出電壓降到零時仍能輸出電流,因此可大大簡化充電器的電路設計。關于要欠壓保護的應用領域(如pC待機電源),也能節(jié)省元件數量。


1TinySwitchII的典型應用


1.12.5W恒流/恒壓輸出式手機電池充電器


由TNY264(IC1)構成的2.5W(5V、0.5A)、交流寬范圍輸入的手機電池充電器電路,如圖1所示。RF為熔斷電阻器。85V~265V交流電經過VD1~VD4橋式整流,再通過由電感L1與C1、C2構成的π型濾波器,獲得直流高壓UI。R1為L1的阻尼電阻。利用TNY264的頻率抖動特性,允許使用簡單的濾波器和低價格的安全電容C8(Y電容)即可滿足抑制初、次級之間傳導式電磁干擾(EMI)的國際標準。即使發(fā)生輸出端容性負載接地的最不利情況下,通過給高頻變壓器新增屏蔽層,仍能有效抑制EMI。由二極管VD6、電容C3和電阻R2構成的鉗位保護電路,能將功率MOSFET關斷時加在漏極上的尖峰電壓限制在安全范圍以內。當輸出電流IO低于500mA時,電壓控制環(huán)工作,電流控制環(huán)則因晶體管VT截止而不起用途。此時,輸出電壓UO由光耦合器IC2(LTV817)中LED的正向壓降(UF≈1V)和穩(wěn)壓管VDZ的穩(wěn)壓值(UZ=3.9V)來共同設定,即UO=UF+UZ≈5V。電阻R8給穩(wěn)壓管供應偏置電流,使VDZ的穩(wěn)定電流IZ接近于典型值。次級電壓經VD5、C5、L2和C6整流濾波后,獲得+5V輸出電壓。


圖1:2.5W恒壓/恒流式手機電池充電器


TinySwitchII的開關頻率較高,在輸出整流管VD5關斷后的反向恢復過程中,會出現開關噪聲,容易損壞整流管。雖然在VD5兩端并上由阻容元件串聯(lián)而成的RC吸收電路,能對開關噪聲起到一定的抑制用途,但效果仍不理想,況且在電阻上還會造成功率損耗。解決的辦法是在次級整流濾波器上串聯(lián)一只磁珠。


磁珠(Magneticbead)是近年來問世的一種超小型的非晶合金磁性材料,它與鐵氧體屬兩種材料。市售的磁珠外形與塑封二極管相仿,外形呈管狀,但改用磁性材料封裝,內穿一根導線而制成的小電感。常見磁珠的外形尺寸有Φ2.5×3(mm)、Φ2.5×8(mm)、Φ3×5(mm)等多種規(guī)格。供單片開關電源使用的磁珠,電感量一般為幾至幾十μH。磁珠的直流電阻非常小,一般為0.005Ω~0.01Ω。通常噪聲濾波器只能吸收已發(fā)生了的噪聲,屬于被動抑制型;磁珠的用途則不同,它能抑制開關噪聲的出現,因此屬于主動抑制型,這是二者的根本差別。磁珠可廣泛用于高頻開關電源、錄像機、電子測量儀器、以及各種對噪聲要求非常嚴格的電路中。圖1中的濾波電感L2,就選用3.3μH的磁珠,可濾除VD5在反向恢復過程中出現的開關噪聲。


由晶體管VT、電流檢測電阻R4和光耦合器IC2組成電流控制環(huán)。當輸出電流IO接近于500mA時,由于R4上的壓降升高,使晶體管VT的發(fā)射極電壓UBE也隨之升高,VT進入放大區(qū),此時電流控制環(huán)開始起用途,輸出呈恒流特性。即使輸出端發(fā)生短路故障,使得IO↑,UO→0V,由于電阻R6和R4上的總壓降約為1.2V,仍能維持VT和光耦合器中LED的正常工作。R3為基極限流電阻。1.215W的pC機待機電源電路字串6


一種輸出功率為15W的pC機待機電源電路如圖2所示。該電源可供應兩路輸出:主輸出為+5V、3A;輔助輸出則為+12V、20mA??傒敵龉β蕿?5.24W,電源效率高于78%。電路中采用兩片集成電路:TNY267p型微型單片開關電源(IC1),SFH6152型線性光耦合器(IC2)。直流輸入電壓為140V~375V,這對應于交流輸入電壓為230V±15%或者110/115V倍壓輸入的情況。利用TNY267p的欠壓檢測、自動重啟動和高頻開關特性,允許使用體積較小、價格較低的EE22型高頻變壓器磁芯。TNY267p芯片采用的是DIp8封裝形式,它能濾除因輸出濾波電容緩慢放電而引起自動重啟動時,在輸出電壓波形上形成的毛刺。當輸入電壓低于欠壓值時,TNY267p就自動關斷,起到保護用途;;僅當輸入電壓高于欠壓閾值時才工作。R2、R3為欠壓閾值設定電阻。二者的總阻值選4MΩ時,欠壓閾值設定為直流200V,整流后的直流高壓UI必須高于200V時,才能開啟電源。而一旦開啟電源,就將持續(xù)工作,直到UI降至140V才關機。這種滯后式關機的特性,可為待機電源供應所需的保持(Holdup)時間。


圖2:15W的pC機待機電源電路


初級一側的輔助繞組經VD2、C2整流濾波后,獲得+12V輸出電壓,并通過R4給TNY267p供電。正常工作時TNY267p內部漏極驅動的電流源也停止對外部旁路電容充電,以減少其間的靜態(tài)損耗。選R4=10kΩ時,可為旁路端供應640μA的電流,這略高于TNY267p的損耗電流,超出部分將被芯片內部的穩(wěn)壓管鉗位在6.3V的安全電壓上。字串6次級輸出經VD3、C6和C7進行整流濾波。L與C8構成后級濾波器,重要用來濾除開關噪聲。當輸出端短路時,自動重啟動電路就限制了輸出電流的增大,并且濾除了對VD3的過沖電壓。由光耦合器IC2(SFH6152)、穩(wěn)壓管VDZ對5V輸出進行檢測,R5給穩(wěn)壓管供應偏置電流。


2:電路設計要


2.1使用注意事項


(1)直流輸入電壓UI的最小值UImin可按90V來設計。輸入寬范圍電壓(85V~265V)時,輸入級濾波電容C1的容量可按3μF/W的比例系數來選取;例如當輸出功率pO=10W時,C1=30μF。關于交流230V±15%固定電壓輸入的情況,比例系數可取1μF/W。


(2)為了降低損耗,提高電源效率,次級整流管宜采用肖特基勢壘二極管(SchottkyBarrierDiode,英文縮寫為SBD),簡稱肖特基二極管。這種管子具有正向壓降低(UF≈0.4V)、功率損耗小、反向恢復時間短(trr可小到幾ns)等優(yōu)點,適合用做低壓、大電流整流或續(xù)流。


(3)選擇輸出功率較大的TinySwitchII芯片,有助于提高電源效率。例如在圖2所示的電路中,選擇TNY267時電源效率的下限值為78%;若采用TNY266、TNY264,就依次降為76%、74%。


(4)在特定的應用中,TinySwitchII的最大輸出功率隨熱環(huán)境(包括環(huán)境溫度,散熱條件,通風狀況以及電源采用密封式還是敞開式等因素)、高頻變壓器磁芯的尺寸、工作方式的設計(持續(xù)模式或不持續(xù)模式)、所需功率、輸入電壓的最小值、輸入級濾波電容的容量、輸出整流管的正向壓降等條件而變化,可能與TinySwitchII系列第二代微型開關電源的原理一文中的表1中所列的典型值不同。


(5)TinySwitchII能濾除高頻變壓器出現的音頻噪聲。允許采用普通結構的浸漆變壓器,磁芯之間也可以不用膠粘接。當開關電源隨負載的減輕而出現音頻干擾時,TinySwitchII就通過不持續(xù)地減小極限電流值,以濾除音頻噪聲。


(6)圖1中的LTV817型線性光耦合器,可用pC817或pC817A來代替。它們的技術參數基本相同,電流傳輸比CTR=80%~160%,反向擊穿電壓U(br)CEO≥35V。


(7)在圖2所示電路中,待機電源若選擇TNY266p芯片,輸出功率就降為10W。此時可選EE16型高頻變壓器磁芯,并且還可以去掉濾波電容C7。


2.2印制板設計要點


TinySwitchII芯片的印制板元器件布置圖,如圖3所示,這里未使用欠壓保護電阻。設計印制板時必須注意以下事項:


圖3:TinySwitchII的印制板元件布置圖


(1)TinySwitchII下面的敷銅板不僅作為源極接地點,還起到散熱用途。圖3中陰影區(qū)域面積應足夠大,才能保證TinySwitchII和次級整流管散熱良好,使芯片的結溫低于100℃。


(2)旁路端電容CBp和輸入濾波電容C1必須采用單點接地法,接至源極端。連接C1、高頻變壓器和TinySwitchII的初級回路應盡量短捷。


(3)初級鉗位電路用于限制關斷時漏極上的峰值電壓。可用R、C、VD型鉗位電路來實現,亦可用200V穩(wěn)壓管或者瞬態(tài)電壓抑制器(TVS)對漏極電壓進行鉗位。在任何情況下,都要使鉗位元器件到高頻變壓器和TinySwitchII的距離為最短。


(4)若使用欠壓檢測電阻,應使電阻盡可能靠近EN/UV端,以減少感應噪聲。還要考慮欠壓檢測電阻R2和R3的耐壓值。選擇(1/4)W的電阻時,一般可承受200V電壓(指持續(xù)加壓,下同);對(1/2)W的電阻,耐壓值則為400V。


(5)安全電容(Y電容)應直接安裝在初級濾波電容的正極與次級的公共地(返回端)之間,最大限度地抑制電磁干擾和共模浪涌電壓。


(6)光耦合器到TinySwitchII的EN/UV端和源極的距離應最短,以減小噪聲耦合。EN/UV腳到光耦合器的距離應小于12.7mm,到漏極的距離則應大于5.1mm。


(7)為提高穩(wěn)壓性能,連到次級繞組、次級整流管、次級濾波電容的的環(huán)路要盡量短。次級整流管的焊盤面積須足夠大,以確保在輸出短路的情況下能將整流二極管的熱量及時散發(fā)掉。


(8)連到輸入、輸出濾波電容的印特種線采用了末端收縮的布線方式,這有兩個好處:能使所有的高頻電流通過濾波電容被濾掉(若印特種線過寬,印特種線之間的分布電容就會影響對高頻干擾的濾波效果);;減少由TinySwitchII向輸入濾波電容、由次級整流管向輸出濾波電容傳輸的熱量。返回端與次級的連線要短捷、連線的特性阻抗要低。另外,返回端應直接連到次級繞組的引腳處,而不是Y電容的焊點處。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術能力