鉅大LARGE | 點(diǎn)擊量:1035次 | 2020年06月22日
開(kāi)關(guān)電源的技術(shù)追求和發(fā)展趨勢(shì)技術(shù)
隨著電子技術(shù)的高速發(fā)展,電子系統(tǒng)的應(yīng)用領(lǐng)域越來(lái)越廣泛,電子設(shè)備的種類也越來(lái)越多,電子設(shè)備與人們的工作、生活的關(guān)系日益密切。任何電子設(shè)備都離不開(kāi)可靠的電源,它們對(duì)電源的要求也越來(lái)越高。電子設(shè)備的小型化和低成本化使電源以輕、薄、小和高效率為發(fā)展方向。
傳統(tǒng)的晶體管串聯(lián)調(diào)整穩(wěn)壓電源是連續(xù)控制的線性穩(wěn)壓電源。這種傳統(tǒng)穩(wěn)壓電源技術(shù)比較成熟,并且已有大量集成化的線性穩(wěn)壓電源模塊,具有穩(wěn)定性能好、輸出紋波電壓小、使用可靠等優(yōu)點(diǎn)。但其通常都需要體積大且笨重的工頻變壓器與體積和重量都很大的濾波器。由于調(diào)整管工作在線性放大狀態(tài),為了保證輸出電壓穩(wěn)定,其集電極與發(fā)射極之間必須承受較大的電壓差,導(dǎo)致調(diào)整管功耗較大,電源效率很低,一般只有45%左右。
另外,由于調(diào)整管上消耗較大的功率,所以需要采用大功率調(diào)整管并裝有體積很大的散熱器,很難滿足現(xiàn)代電子設(shè)備發(fā)展的要求。20世紀(jì)50年代,美國(guó)宇航局以小型化、重量輕為目標(biāo),為搭載火箭開(kāi)發(fā)了開(kāi)關(guān)電源。在近半個(gè)多世紀(jì)的發(fā)展過(guò)程中,開(kāi)關(guān)電源因具有體積小、重量輕、效率高、發(fā)熱量低、性能穩(wěn)定等優(yōu)點(diǎn)而逐漸取代傳統(tǒng)技術(shù)制造的連續(xù)工作電源,并廣泛應(yīng)用于電子整機(jī)與設(shè)備中。20世紀(jì)80年代,計(jì)算機(jī)全面實(shí)現(xiàn)了開(kāi)關(guān)電源化,率先完成計(jì)算機(jī)的電源換代。20世紀(jì)90年代,開(kāi)關(guān)電源在電子、電器設(shè)備、家電領(lǐng)域得到了廣泛的應(yīng)用,開(kāi)關(guān)電源技術(shù)進(jìn)入快速發(fā)展期。
開(kāi)關(guān)型穩(wěn)壓電源采用功率半導(dǎo)體器件作為開(kāi)關(guān),通過(guò)控制開(kāi)關(guān)的占空比調(diào)整輸出電壓。以功率晶體管(GTR)為例,當(dāng)開(kāi)關(guān)管飽和導(dǎo)通時(shí),集電極和發(fā)射極兩端的壓降接近零;當(dāng)開(kāi)關(guān)管截止時(shí),其集電極電流為零。所以其功耗小,效率可高達(dá)70%-95%。而功耗小,散熱器也隨之減小。開(kāi)關(guān)型穩(wěn)壓電源直接對(duì)電網(wǎng)電壓進(jìn)行整流、濾波、調(diào)整,然后由開(kāi)關(guān)調(diào)整管進(jìn)行穩(wěn)壓,不需要電源變壓器。此外,開(kāi)關(guān)工作頻率為幾十千赫,濾波電容器、電感器數(shù)值較小。因此開(kāi)關(guān)電源具有重量輕、體積小等優(yōu)點(diǎn)。
另外,由于功耗小,機(jī)內(nèi)溫升低,提高了整機(jī)的穩(wěn)定性和可靠性。而且其對(duì)電網(wǎng)的適應(yīng)能力也有較大的提高,一般串聯(lián)穩(wěn)壓電源允許電網(wǎng)波動(dòng)范圍為220±10%,而開(kāi)關(guān)型穩(wěn)壓電源在電網(wǎng)電壓在10-260伏范圍內(nèi)變化時(shí),都可獲得穩(wěn)定的輸出電壓。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
開(kāi)關(guān)電源的高頻化是電源技術(shù)發(fā)展的創(chuàng)新技術(shù),高頻化帶來(lái)的效益是使開(kāi)關(guān)電源裝置空前地小型化,并使開(kāi)關(guān)電源進(jìn)入更廣泛的領(lǐng)域,特別是在高新技術(shù)領(lǐng)域的應(yīng)用,推動(dòng)了高新技術(shù)產(chǎn)品的小型化、輕便化。另外開(kāi)關(guān)電源的發(fā)展與應(yīng)用在節(jié)約資源及保護(hù)環(huán)境方面都具有深遠(yuǎn)的意義。
目前市場(chǎng)上開(kāi)關(guān)電源中功率管多采用雙極型晶體管,開(kāi)關(guān)頻率可達(dá)幾十千赫;采用MOSFET的開(kāi)關(guān)電源轉(zhuǎn)換頻率可達(dá)幾百千赫。為提高開(kāi)關(guān)頻率,必須采用高速開(kāi)關(guān)器件。對(duì)于兆赫以上開(kāi)關(guān)頻率的電源可利用諧振電路,這種工作方式稱為諧振開(kāi)關(guān)方式。
它可以極大地提高開(kāi)關(guān)速度,理論上開(kāi)關(guān)損耗為零,噪聲也很小,這是提高開(kāi)關(guān)電源工作頻率的一種方式。采用諧振開(kāi)關(guān)方式的兆赫級(jí)變換器已經(jīng)實(shí)用化。開(kāi)關(guān)電源的技術(shù)追求和發(fā)展趨勢(shì)可以概括為以下四個(gè)方面。
一、小型化、薄型化、輕量化、高頻化———開(kāi)關(guān)電源的體積、重量主要是由儲(chǔ)能元件(磁性元件和電容)決定的,因此開(kāi)關(guān)電源的小型化實(shí)質(zhì)上就是盡可能減小其中儲(chǔ)能元件的體積;在一定范圍內(nèi),開(kāi)關(guān)頻率的提高,不僅能有效地減小電容、電感及變壓器的尺寸,而且還能夠抑制干擾,改善系統(tǒng)的動(dòng)態(tài)性能。因此,高頻化是開(kāi)關(guān)電源的主要發(fā)展方向。
二、高可靠性———開(kāi)關(guān)電源使用的元器件比連續(xù)工作電源少數(shù)十倍,因此提高了可靠性。從壽命角度出發(fā),電解電容、光耦合器及排風(fēng)扇等器件的壽命決定著電源的壽命。所以,要從設(shè)計(jì)方面著眼,盡可能使用較少的器件,提高集成度。這樣不但解決了電路復(fù)雜、可靠性差的問(wèn)題,也增加了保護(hù)等功能,簡(jiǎn)化了電路,提高了平均無(wú)故障時(shí)間。
標(biāo)稱電壓:28.8V
標(biāo)稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測(cè)繪、無(wú)人設(shè)備
三、低噪聲———開(kāi)關(guān)電源的缺點(diǎn)之一是噪聲大。單純地追求高頻化,噪聲也會(huì)隨之增大。采用部分諧振轉(zhuǎn)換回路技術(shù),在原理上既可以提高頻率又可以降低噪聲。所以,盡可能地降低噪聲影響是開(kāi)關(guān)電源的又一發(fā)展方向。
四、采用計(jì)算機(jī)輔助設(shè)計(jì)和控制———采用CAA和CDD技術(shù)設(shè)計(jì)最新變換拓?fù)浜妥罴褏?shù),使開(kāi)關(guān)電源具有最簡(jiǎn)結(jié)構(gòu)和最佳工況。在電路中引入微機(jī)檢測(cè)和控制,可構(gòu)成多功能監(jiān)控系統(tǒng),可以實(shí)時(shí)檢測(cè)、記錄并自動(dòng)報(bào)警等。
開(kāi)關(guān)電源的發(fā)展從來(lái)都是與半導(dǎo)體器件及磁性元件等的發(fā)展休戚相關(guān)的。高頻化的實(shí)現(xiàn),需要相應(yīng)的高速半導(dǎo)體器件和性能優(yōu)良的高頻電磁元件。發(fā)展功率MOSFET、IGBT等新型高速器件,開(kāi)發(fā)高頻用的低損磁性材料,改進(jìn)磁元件的結(jié)構(gòu)及設(shè)計(jì)方法,提高濾波電容的介電常數(shù)及降低其等效串聯(lián)電阻等,對(duì)于開(kāi)關(guān)電源小型化始終產(chǎn)生著巨大的推動(dòng)作用。
總之,人們?cè)陂_(kāi)關(guān)電源技術(shù)領(lǐng)域里,邊研究低損耗回路技術(shù),邊開(kāi)發(fā)新型元器件,兩者相互促進(jìn)并推動(dòng)著開(kāi)關(guān)電源以每年超過(guò)兩位數(shù)的市場(chǎng)增長(zhǎng)率向小型、薄型、高頻、低噪聲以及高可靠性方向發(fā)展。
電子設(shè)備特別是計(jì)算機(jī)的不斷小型化,要求供電電源的體積隨之小型化,因而開(kāi)關(guān)電源開(kāi)始替代以笨重的工頻變壓器為特征的線性穩(wěn)壓電源,同時(shí)電源效率得到明顯提高。電源體積的減小意味著散熱能力的變差,因而要求電源的功耗變小,即在輸出功率不變的前提下,效率必須提高。
高效率功率變換:開(kāi)關(guān)電源設(shè)計(jì)追求的目標(biāo)
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須提高效率,同時(shí),高的電源效率可以有效地減小功率半導(dǎo)體器件的應(yīng)力,有利于提高其可靠性。
開(kāi)關(guān)電源的損耗主要為:無(wú)源元件損耗和有源元件損耗
開(kāi)關(guān)損耗一直困惑著開(kāi)關(guān)電源設(shè)計(jì)者,由于功率半導(dǎo)體器件在開(kāi)關(guān)過(guò)程中,器件上同時(shí)存在電流、電壓,因而不可避免地存在開(kāi)關(guān)損耗,如果開(kāi)關(guān)電源中開(kāi)關(guān)管和輸出整流二極管能實(shí)現(xiàn)零電壓開(kāi)關(guān)或零電流開(kāi)關(guān),則其效率可以明顯提高。
開(kāi)關(guān)過(guò)程引起的開(kāi)關(guān)損耗大致會(huì)占總輸入功率的5%~10%,大幅度降低或消除這一損耗可使開(kāi)關(guān)電源的效率提高5%~10%。最有效的方法是軟開(kāi)關(guān)技術(shù)或零電壓開(kāi)關(guān)或零電流開(kāi)關(guān)技術(shù)。
在眾多軟開(kāi)關(guān)的方案中,比較實(shí)用的有大功率的全橋變換器,通常采用移相零電壓開(kāi)關(guān)的控制方式,這種控制方式要求在初級(jí)側(cè)需附加一續(xù)流電感以確保開(kāi)關(guān)管在零電壓狀態(tài)下導(dǎo)通,由于較大的有效值電流流過(guò),這個(gè)附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無(wú)源無(wú)損耗緩沖電路的特點(diǎn)是不破壞常規(guī)PWM控制方式,設(shè)計(jì)/調(diào)試簡(jiǎn)單。盡管如此,無(wú)源無(wú)損耗緩沖電路和準(zhǔn)諧振/零電壓開(kāi)關(guān)工作方式也存在一些缺點(diǎn),如僅能實(shí)現(xiàn)關(guān)斷軟開(kāi)關(guān)以及在反激式變換器中不太適于大負(fù)載范圍變化。軟開(kāi)關(guān)中有源箝位是提高單管正/反激變換器效率的有效方法,最初的專利限制現(xiàn)在已失效,可以普遍應(yīng)用。
功率半導(dǎo)體器件的進(jìn)步:高效率功率變換的根本
功率半導(dǎo)體器件的進(jìn)步特別是PowerMOSFET的進(jìn)步引發(fā)出功率變換的一系列的進(jìn)步:PowerMOSFET的極快的開(kāi)關(guān)速度,使開(kāi)關(guān)電源的開(kāi)關(guān)頻率從雙極晶體管的20kHz提高到100kHz以上,有效地減小了無(wú)源儲(chǔ)能元件(電感、電容)的體積。低壓PowerMOSFET使低壓同步整流成為現(xiàn)實(shí),器件的導(dǎo)通電壓從肖特基二極管的0.5V左右,降低到同步整流器的0.1V甚至更低,使低壓整流器的效率至少提高了10%。高壓PowerMOSFET的導(dǎo)通壓降和開(kāi)關(guān)特性的改善,提高了開(kāi)關(guān)電源的初級(jí)效率。功率半導(dǎo)體器件的功耗的降低也使散熱器和整機(jī)的體積減小。
電源界有一個(gè)不成文的觀點(diǎn):不穩(wěn)壓的比穩(wěn)壓的效率高、不隔離的比隔離的效率高、窄范圍輸入電壓的比寬范圍輸入的效率高。Vicor的48V輸入電源模塊的效率達(dá)到97%。交流輸入開(kāi)關(guān)電源需要功率因數(shù)校正,由于功率因數(shù)校正已具有穩(wěn)壓功能,在對(duì)輸出紋波要求不高的應(yīng)用(如輸出接有蓄電池或超級(jí)電容器),可以采用功率因數(shù)校正加不調(diào)節(jié)的隔離變換器電路拓?fù)?,?guó)外在1986年已有產(chǎn)品,效率到達(dá)93%以上。
在DC48V輸入電壓的電源模塊中,效率在93%以上的模塊幾乎無(wú)一例外地采用前級(jí)穩(wěn)壓、后級(jí)不調(diào)節(jié)隔離的方案,并且將第一級(jí)的輸出電容和第二級(jí)的輸出電感取消,簡(jiǎn)化了電路結(jié)構(gòu)。
國(guó)內(nèi)的很多開(kāi)關(guān)電源在設(shè)計(jì)上對(duì)結(jié)構(gòu)設(shè)計(jì)的關(guān)注相對(duì)不夠,有時(shí)會(huì)出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過(guò)熱,有的地方幾乎沒(méi)有溫升,甚至PCB上產(chǎn)生較大的損耗。一個(gè)好的開(kāi)關(guān)電源應(yīng)該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應(yīng)有盡可能小的損耗,這在模塊電源和塑料外殼的Adapter的設(shè)計(jì)中尤為重要。
效率提高的同時(shí):電源的電磁干擾得到減小
在開(kāi)關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的提高往往需要軟開(kāi)關(guān)技術(shù)或零電壓開(kāi)關(guān)或零電流開(kāi)關(guān)技術(shù)(無(wú)論是專門設(shè)置還是電路本身固有),應(yīng)用這些技術(shù)減緩了開(kāi)關(guān)過(guò)程的電壓、電流的變化速率或消除了開(kāi)關(guān)過(guò)程,電磁干擾變得很小,不需要像常規(guī)開(kāi)關(guān)電源電路中需要專門設(shè)置抑制電磁干擾的電路(這個(gè)電路是存在損耗的)。
開(kāi)關(guān)電源進(jìn)入:高效率功率變換時(shí)代
仔細(xì)分析,高效率功率變換看起來(lái)是很簡(jiǎn)單的,甚至有些電路拓?fù)湓?0多年前就有介紹(如兩級(jí)變換拓?fù)浣Y(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊(cè)的ApplicationNote的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓?fù)浣Y(jié)構(gòu)),但受當(dāng)時(shí)的技術(shù)水平,特別是人們認(rèn)識(shí)的限制(總是認(rèn)為兩級(jí)變換的效率比單級(jí)低,而事實(shí)上兩級(jí)變換可以實(shí)現(xiàn)事實(shí)上的固有的零電壓開(kāi)關(guān),單級(jí)變換則需要特殊的附加電路和控制方式)而并沒(méi)有得到承認(rèn)和應(yīng)用。器件的性能和人們認(rèn)識(shí)的提高已經(jīng)使兩級(jí)變換作為高效率功率變換的主要方式之一。
結(jié)語(yǔ)
如今對(duì)于開(kāi)關(guān)電源設(shè)計(jì)工程師和制造廠商而言,先進(jìn)的功率半導(dǎo)體器件可以方便得到,先進(jìn)的電路拓?fù)浜涂刂品绞揭呀?jīng)開(kāi)始應(yīng)用,他們所剩下的就是想辦法提高自己的技術(shù)水平,同時(shí)創(chuàng)造更好的應(yīng)用機(jī)會(huì)和市場(chǎng)份額。