黄网站免费现在看_2021日韩欧美一级黄片_天天看视频完全免费_98色婷婷在线

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

電池組“可靠性”的影響因素和模型計算

鉅大LARGE  |  點擊量:1038次  |  2020年07月10日  

鋰離子電池組的可靠性受到多種因素的影響,例如鋰離子單體電池的可靠性,電子元器件的可靠性,還有另外一個經(jīng)常被我們所忽略的因素溫度。為何說溫度會影響鋰離子電池組的可靠性呢?因為溫度關于鋰離子電池的電化學性能有著顯著的影響,鋰離子電池的自放電和壽命衰降都與溫度有著密切的關系,高溫會顯著的加速鋰離子電池的壽命衰降和自放電。由于鋰離子電池組結構的限制,會非常容易導致電池組內溫度不均勻,這就導致了另一個不均衡現(xiàn)象容量衰降不均衡,而單體電池之間容量的不匹配會導致部分電池在使用中發(fā)生過充和過放,從而加速整個電池組的容量衰降速度。


近日北京大學的QuanXia等人結合鋰離子電池組的熱特性提出了一種計算鋰離子電池組可靠性的方法,該模型整合了多物理場耦合模型、電池衰降模型和系統(tǒng)可靠性模型,能夠基于鋰離子電池組內溫度分布特性對電池組的可靠性進行分析。QuanXia利用該模型對電池組不同的備份模式進行了計算和分析發(fā)現(xiàn),在備份電池數(shù)量相同的情況下,相比于串聯(lián)備份,并聯(lián)備份能夠顯著的改善電池組的可靠性。此外,降單體電池的排布方式從直線排布改為交叉排布,能夠有效的減少電池組內溫差,提高電池組的可靠性。


由于建模過程比較枯燥乏味,這里我們就不對模型做過多的介紹,我們直接來看可靠性模型關于不同結構的電池組的可靠性分析結果。關于建模感興趣的朋友可以查看今天的含建模過程的文章(《電池組可靠性的影響因素和模型計算【含建模過程】》),文章中包含了完整的建模過程希望對大家有所幫助。


電池組仿真


普通電池組模塊仿真


QuanXia采用了A123的LiFepO4電池對上述模型進行了驗證,電池組采用了3并5串的結構,電池組的一些熱特性參數(shù)如下表2所示,模型的參數(shù)如下表3所示,模型的邊界條件如下表4所示。


下圖為電池組的仿真結果,圖b為電池組內的溫度分布,圖c為電池組內散熱媒介的流動速度分布。根據(jù)電池組內的溫度分布,就可以根據(jù)式(11)計算出的到不同單體電池的容量衰降,并據(jù)此計算單體電池的健康狀態(tài)。我們以電池組中最中間的一只電池(2,3)為例,計算了循環(huán)不同的周期后電池衰降到不同狀態(tài)的概率,如下表5所示??梢钥吹皆诮?jīng)過1000次循環(huán)后該電池失效的幾率達到0.9991。整個電池組在不同的循環(huán)時間后失效的概率如下表6所示,可以看到在經(jīng)過500Ah充電后,電池組失效的概率為0.3754,在充電700Ah后電池組的失效概率達到0.999。


不同的備份模式電池組的可靠性仿真


電池組的備份形式重要分為熱備份、冷備份和熱待機三種形式,這里我們探討一下電池組熱備份的情況下電池組的可靠性分析。熱備份也可以分為兩種類型:并聯(lián)或者串聯(lián)。下圖a和b分別展示了串聯(lián)備份(3并10串)和并聯(lián)備份(6并5串)兩種模式的電池結構,并通過調節(jié)電池組的工作電流保證兩種備份模式下電池組中的單體電池的工作電流相同。因此兩種備份模式下,電池組的溫度分布和散熱媒介的速度分布也是相同的,如下圖的c和d所示。那么這兩種備份模式關于鋰離子電池組的可靠性會出現(xiàn)什么影響嗎?


下圖展示了上述的兩種備份模式下,鋰離子電池的可靠性隨著時間變化的曲線,從圖中我們可以看到在經(jīng)過600Ah充電后,沒有備份的3并5串電池的可靠性下降到了0.0635,而有備份的電池組可靠性明顯上升,3并10串電池組的可靠性為0.8381,6并5串電池組的可靠性高達0.9981,其他的備份方式的電池組可靠性如下表所示。從計算結果來看,不同的備份模式會對電池組的可靠性出現(xiàn)顯著的影響,在備份電池數(shù)量相同的情況下,并聯(lián)備份能夠顯著的提高電池組的可靠性。但是我們也要注意簡單的新增備份電池的數(shù)量并不能提高電池組的可靠性,例如同樣在6并的情況下,隨著串聯(lián)電池數(shù)量的新增,會出現(xiàn)可靠性降低的情況,這重要是因為隨著串聯(lián)電池數(shù)量的新增,會導致溫度分布的變化,進而降低電池組的可靠性。


電池組結構和冷卻條件關于可靠性的影響


我們了解電池組的結構和冷卻條件會影響電池組的冷卻效果,進而影響電池組內溫度的分布,導致電池組內溫度分布不均勻,引起單體電池衰降的不均勻,最終降低電池組的可靠性。下圖展示了一種能夠降低電池組內溫度不均勻性的結構設計,除此之外這個3并5串的模塊其他的一些邊界條件都與我們討論的第一個案例相同。


下圖展示了不同電池組結構和冷卻條件下電池組內部的溫度分布和電池組的可靠性曲線隨著使用時間的變化,從仿真結果上來看簡單的把單體電池的排列方式從直線排布,更改為交叉排布就讓電池組的可靠性(充電600Ah)從0.0635提高了0.9328,電池組內單體電池之間的最大溫差從4.62K降到了2.5K,這說明這種交叉排布的方式更加利于電池組的散熱,提高電池組內溫度的一致性。同時我們也可以看到,將冷卻劑的流速從0.5m/s提高到1m/s,電池組內最大的溫差從4.62K下降到了2.36K,電池組的可靠性得到了大幅的提升(藍色曲線)。


從上面的分析不難看出,電池組的可靠性嚴重依賴電池組內部溫度分布的均勻性,將電池組內單體電池的排布方式從直線排布改為交叉排布、提高散熱媒介的流速都能夠顯著的改善電池組內溫度的均勻性,從而提升鋰離子電池組的可靠性。另外一個影響鋰離子電池組的可靠性的因素是電池組的備份模式,從仿真結果來看并聯(lián)式的備份相比于串聯(lián)式備份具有明顯的優(yōu)勢。這一結果也提醒我們廣大設計師關于電池組可靠性設計要考慮多種因素的用途,特別是溫度的影響,隨著電池組復雜程度的新增,電池組的散熱難度顯著新增,容易導致電池組內溫度的不均勻性新增,影響電池組的可靠性。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術能力