鉅大LARGE | 點(diǎn)擊量:940次 | 2020年08月04日
全固態(tài)鋰離子電池:夢(mèng)想照進(jìn)現(xiàn)實(shí)
近期學(xué)術(shù)界、產(chǎn)業(yè)界對(duì)全固態(tài)鋰離子電池給予了厚望。固態(tài)電池公司在國(guó)內(nèi)外如雨后春筍紛紛涌現(xiàn)。多家世界著名汽車(chē)公司2017年相繼宣布,2020~2025年全固態(tài)鋰離子電池將量產(chǎn)上車(chē)。
許多研究者和公司認(rèn)為,相關(guān)于鋰硫、鋰空、鋁、鎂電池以及并不存在的石墨烯電池,全固態(tài)金屬鋰離子電池是最具潛力的替代現(xiàn)有高能量密度鋰離子電池的候選技術(shù),其能量密度有望是現(xiàn)有鋰離子電池的2~5倍,循環(huán)性和服役壽命更長(zhǎng),倍率性能更高,并可能從本質(zhì)上解決現(xiàn)有液態(tài)電解質(zhì)鋰離子電池的安全性問(wèn)題。
假如這些目標(biāo)得以實(shí)現(xiàn),全固態(tài)鋰離子電池必然會(huì)顛覆現(xiàn)有的鋰離子電池技術(shù)。本文對(duì)全固態(tài)鋰離子電池的技術(shù)難點(diǎn)和挑戰(zhàn)進(jìn)行了初步分析。
液態(tài)電解質(zhì)鋰離子電池的短板
針對(duì)消費(fèi)電子類(lèi)應(yīng)用的電芯體積能量密度達(dá)到了730W·h/L,近期將朝著750~800W·h/L發(fā)展,相應(yīng)的質(zhì)量能量密度為250~300W·h/kg,循環(huán)性在500~1000次。動(dòng)力鋰電池質(zhì)量能量密度達(dá)到了240W·h/kg,體積能量密度達(dá)到了520~550W·h/L,近期將朝著600~700W·h/L發(fā)展,質(zhì)量能量密度朝著300W·h/kg發(fā)展,循環(huán)性達(dá)到2000次以上。儲(chǔ)能電池循環(huán)壽命達(dá)到了7000~10000次,目前進(jìn)一步朝著12000~15000次發(fā)展。關(guān)于能量密度越來(lái)越高的采用液態(tài)電解質(zhì)的鋰離子電池,盡管從材料、電極、電芯、模組、電源管理、熱管理、系統(tǒng)設(shè)計(jì)等各個(gè)層面采取了多種改進(jìn)措施,安全性問(wèn)題依然很突出,熱失控難以徹底防止。除此之外,液態(tài)電解質(zhì)鋰離子電池的電芯還存在以下重要短板。
(1)SEI膜持續(xù)生長(zhǎng)。由于SEI膜生長(zhǎng)的不致密且正負(fù)極材料在循環(huán)過(guò)程中存在較大的體積膨脹收縮,SEI膜部分成分可以溶解在電解液里,導(dǎo)致正負(fù)極表面的SEI膜持續(xù)生長(zhǎng),引起活性鋰的減少,電解液持續(xù)耗盡,內(nèi)阻、內(nèi)壓不斷提高,電極體積膨脹。
(2)過(guò)渡金屬溶解。關(guān)于層狀及尖晶石結(jié)構(gòu)氧化物正極材料來(lái)說(shuō),正極在充電態(tài)下處于高氧化態(tài),容易發(fā)生還原相變,骨架中的過(guò)渡金屬離子與電解質(zhì)中的溶劑相互用途后析出到電解液,并擴(kuò)散到負(fù)極,催化SEI膜進(jìn)一步生長(zhǎng),同時(shí)正極材料表面結(jié)構(gòu)被破壞,內(nèi)阻新增,可逆容量損失。由于過(guò)渡金屬催化SEI膜生長(zhǎng)的用途,電池中對(duì)所有材料的游離磁性金屬的要求達(dá)到了幾十個(gè)ppb級(jí)以下,這也導(dǎo)致了電池材料成本的提高。
(3)正極材料析氧。關(guān)于高容量的層狀氧化物,在充電至較高電壓時(shí),正極晶格中的氧容易失去電子,以游離氧的形式從晶格析出,并與電解液發(fā)生氧化反應(yīng),導(dǎo)致熱失控;正極材料結(jié)構(gòu)也逐漸破壞。
(4)電解液氧化。為了提高正極材料容量,要充電至高電壓以便脫出更多的鋰,目前針對(duì)鈷酸鋰的電解質(zhì)溶液可以充電到4.45V,三元材料可以充電到4.35V,繼續(xù)充到更高電壓,電解質(zhì)會(huì)氧化分解,正極表面也會(huì)發(fā)生不可逆相變。
(5)析鋰。由于嵌入負(fù)極材料內(nèi)部動(dòng)力學(xué)較慢的原因,在低溫過(guò)充或大電流充電下,金屬鋰直接析出在負(fù)極表面,可能導(dǎo)致鋰枝晶,造成微短路;高活性的金屬鋰與液體電解質(zhì)直接發(fā)生還原反應(yīng),損失活性鋰,新增內(nèi)阻。
(6)高溫失效。滿(mǎn)充電態(tài)時(shí)負(fù)極處于還原態(tài),正極處于高氧化態(tài),在高溫下,SEI膜的部分成分溶解度加大,導(dǎo)致高活性的正負(fù)極材料與電解液發(fā)生反應(yīng);同時(shí)鋰鹽在高溫下也會(huì)自發(fā)分解,并催化電解液反應(yīng);這些反應(yīng)有可能導(dǎo)致熱失控。高溫可以來(lái)自外部原因,也可以來(lái)自?xún)?nèi)部的短路、電化學(xué)與化學(xué)放熱反應(yīng)、大電流焦耳熱。
(7)體積膨脹。在采用高容量的硅負(fù)極后,或者高溫脹氣、長(zhǎng)時(shí)間循環(huán)后,由于電解液的持續(xù)分解,SEI生長(zhǎng)和反應(yīng)產(chǎn)氣以及負(fù)極本身的體積膨脹收縮,軟包電芯的體積膨脹超過(guò)應(yīng)用要求的10%以?xún)?nèi)。
假如全固態(tài)電池電芯能夠研制成功,由于其高溫安全性和熱失控行為可能會(huì)有改善,從而簡(jiǎn)化或者省去散熱系統(tǒng),優(yōu)化了熱管理系統(tǒng);也可以采用內(nèi)串式設(shè)計(jì),進(jìn)一步節(jié)省了集流體所占的重量,相關(guān)于同樣能量密度的液態(tài)電解質(zhì)電芯,系統(tǒng)的能量密度會(huì)更高,全固態(tài)電解質(zhì)電芯到系統(tǒng)的能量密度的下降比例應(yīng)該會(huì)更低。因此,從電池系統(tǒng)的角度考慮,關(guān)于同樣正負(fù)極材料的體系,全固態(tài)電池系統(tǒng)的能量密度有可能略高于液態(tài)電解質(zhì)電池系統(tǒng)的能量密度。
發(fā)展全固態(tài)鋰離子電池最重要的推動(dòng)力之一是安全性。電池安全性關(guān)于所有應(yīng)用領(lǐng)域的重要性都排在第一位。電池安全性的核心問(wèn)題是防止熱失控和熱擴(kuò)散。熱失控的條件是產(chǎn)熱速率大于散熱速率,同時(shí)電芯中的物質(zhì)在高溫下發(fā)生一系列熱失控反應(yīng)。因此,假如電芯能夠在高溫下工作,或者說(shuō)發(fā)生熱失控的起始溫度顯著高于電芯的正常工作溫度,則電芯的安全性在過(guò)熱、大電流、內(nèi)短路方面應(yīng)該會(huì)大大改善。關(guān)于針刺、擠壓類(lèi)的安全性要求,要電芯在任一充放電深度(SOC),全壽命周期下都不會(huì)因?yàn)閮?nèi)短路和遇到空氣中的氧、水、氮?dú)舛l(fā)生劇烈的氧化反應(yīng)或其它放熱的化學(xué)及電化學(xué)反應(yīng)。
根據(jù)目前的研究報(bào)道,硫化物、聚合物的化學(xué)及電化學(xué)穩(wěn)定性還要進(jìn)一步提高。事實(shí)上,相關(guān)于液態(tài)電解質(zhì)電芯,尚未有報(bào)道顯示固態(tài)電解質(zhì)全固態(tài)鋰離子電池電芯的綜合電化學(xué)性能超過(guò)液態(tài),目前的研究重點(diǎn)還是解決循環(huán)性、倍率特性,各類(lèi)全固態(tài)鋰離子電池的熱失控、熱擴(kuò)散行為的測(cè)試數(shù)據(jù)還非常少。以(solidstatebatter*)和[(safety)或(thermalrunaway)]為關(guān)鍵詞,WebofScience下屬的核心合集進(jìn)行檢索,2017年得到138篇文獻(xiàn)結(jié)果。
經(jīng)過(guò)篩選,只有9篇提到了固態(tài)電池的安全性,但其中多數(shù)的安全測(cè)試均為用火焰灼燒電解質(zhì)或研究加熱條件下材料的微觀結(jié)構(gòu)變化或強(qiáng)化金屬鋰與固態(tài)電解質(zhì)的界面,并未對(duì)固態(tài)電池進(jìn)行整體的安全性測(cè)試。其中ZAGHIB等的文章分析了聚合物電解質(zhì)與液態(tài)電解質(zhì)的熱失控與自加熱速率比較,日本豐田公司中央研究院利用DSC研究了鈮摻雜鋰鑭鋯氧(LLZNO)全固態(tài)鋰離子電池的產(chǎn)熱行為,最后得出全固態(tài)鋰離子電池能夠提高安全性(產(chǎn)熱量降低到液態(tài)的30%)但并非絕對(duì)安全的結(jié)論。顯然,全固態(tài)鋰離子電池是否真的解決了鋰離子電池的本質(zhì)安全性還有待更廣泛、深入的研究和數(shù)據(jù)積累。
目前下結(jié)論認(rèn)為在全壽命周期中全固態(tài)鋰離子電池以及全固態(tài)金屬鋰離子電池安全性會(huì)顯著優(yōu)于經(jīng)過(guò)優(yōu)化的液態(tài)電解質(zhì)鋰離子電芯為時(shí)尚早,而且基于不同固態(tài)電解質(zhì)的全固態(tài)鋰離子電池可能在安全性方面也會(huì)有顯著差異,要系統(tǒng)研究。假如全固態(tài)電池的高溫?zé)崾Э睾透邷匮h(huán)特性明顯優(yōu)于液態(tài)電解質(zhì)的電芯,則在模塊和系統(tǒng)層面,通過(guò)電源管理、熱管理系統(tǒng),還可以進(jìn)一步防止電芯熱失控和熱擴(kuò)散,相關(guān)于液態(tài)電解質(zhì)電芯,絕熱防護(hù)材料可以更好的應(yīng)用在模塊和系統(tǒng)中,而不是像目前這樣,兼顧散熱和絕熱。
全固態(tài)鋰離子電池的動(dòng)力學(xué)特性
動(dòng)力學(xué)方面,液態(tài)電解質(zhì)鋰離子電池中電極的實(shí)際電化學(xué)反應(yīng)面積是幾何面積的幾十到幾百倍,液態(tài)電解質(zhì)的離子電導(dǎo)率較高,接觸電阻相對(duì)較低,使得鋰離子電池電芯的內(nèi)阻在10~15mΩ/A·h,這樣在大電流工作時(shí),電芯發(fā)熱較低。電芯內(nèi)阻重要包括負(fù)極、固態(tài)電解質(zhì)膜、正極,一般以面電阻來(lái)衡量。提高離子電導(dǎo)率,降低膜片厚度是降低各部分面電阻的有效途徑。目前,全固態(tài)鋰離子電池的各部分室溫面電阻還不能降低到10mΩ/cm2的水平。
內(nèi)阻太高,導(dǎo)致電芯快充時(shí)發(fā)熱,這關(guān)于沒(méi)有冷卻系統(tǒng),但工作溫度要求不能太高的應(yīng)用領(lǐng)域,例如手機(jī)、平板電腦等消費(fèi)電子是不可接受的。全固態(tài)電解質(zhì)電芯最具挑戰(zhàn)的是正負(fù)極充放電過(guò)程中,顆粒發(fā)生體積膨脹收縮,固態(tài)電解質(zhì)相與正負(fù)極活性物質(zhì)的顆粒之間物理接觸可能會(huì)變差。負(fù)極假如采用金屬鋰或含有金屬鋰的復(fù)合材料,面對(duì)的另一大挑戰(zhàn)是在大電流密度下,金屬鋰優(yōu)先在界面析出,假如析出的鋰占滿(mǎn)了界面,會(huì)逐漸降低電化學(xué)反應(yīng)面積。發(fā)展動(dòng)力學(xué)優(yōu)異,在全SOC下,鋰沉積位點(diǎn)在電極內(nèi)部而不是重要在界面的材料和電極設(shè)計(jì)是今后研究的重點(diǎn)和難點(diǎn)。從目前的研究進(jìn)展看,全固態(tài)鋰離子電池的發(fā)展還要多種綜合解決方法來(lái)提高各部分的動(dòng)力學(xué)特性。
計(jì)算表明,同樣正負(fù)極材料的電芯,全固態(tài)電池能量密度顯著低于液態(tài)電解質(zhì)電芯。電芯中負(fù)極只有采用金屬鋰,電芯的能量密度才能顯著高于負(fù)極為石墨或硅的鋰離子電池。目前鋰離子電池電芯的能量密度已經(jīng)達(dá)到了300W·h/kg、730W·h/L的水平,假如能量密度高于2倍,則電芯能量密度要達(dá)到600W·h/kg和1460W·h/L,這雖然有可能,但遠(yuǎn)遠(yuǎn)超過(guò)了現(xiàn)有技術(shù)的水平,更不用說(shuō)5倍了。更何況單純強(qiáng)調(diào)電芯的能量密度并沒(méi)有實(shí)際意義,實(shí)際應(yīng)用要同時(shí)滿(mǎn)足8~20項(xiàng)以上的技術(shù)參數(shù)要求,在這一前提下討論電芯能量密度才更加有實(shí)際意義。即便金屬鋰離子電池的能量密度按照計(jì)算的確可以顯著高于鋰離子電池,但金屬鋰負(fù)極的循環(huán)性、安全性、倍率特性目前還遠(yuǎn)遠(yuǎn)不能滿(mǎn)足應(yīng)用需求。
針對(duì)動(dòng)力、儲(chǔ)能應(yīng)用的大容量全固態(tài)鋰離子電池(10A·h以上),目前尚未有任何一家公司報(bào)道過(guò)系統(tǒng)的電化學(xué)數(shù)據(jù)和安全性數(shù)據(jù),熱失控和熱擴(kuò)散行為研究的很少,更不用說(shuō)全壽命周期的安全性行為了。在電化學(xué)性能和安全性?xún)?yōu)勢(shì)尚未研究和驗(yàn)證清楚,且可以大規(guī)模量產(chǎn)的材料體系、電極和電解質(zhì)膜材料、電芯的設(shè)計(jì)與智能制造裝備尚未成熟,相應(yīng)的BMS,熱管理系統(tǒng)還沒(méi)有系統(tǒng)研制,電池成本尚未核算清楚的情況下,宣傳全固態(tài)鋰離子電池能夠在短時(shí)間內(nèi)實(shí)現(xiàn)商業(yè)化,特別是直接用在電動(dòng)汽車(chē)上恐怕是夢(mèng)想多于現(xiàn)實(shí)。即便是日本,關(guān)于硫化物電解質(zhì)的全固態(tài)鋰離子電池能否最終獲得應(yīng)用,何時(shí)能夠應(yīng)用也有不同的看法,空氣敏感性、易氧化、高界面電阻、高成本帶來(lái)的挑戰(zhàn)并不容易在短時(shí)間內(nèi)徹底解決,依然要持續(xù)努力。
根據(jù)計(jì)算的結(jié)果,由于采用含鋰負(fù)極材料的電芯能量密度具有較大提升空間,從解決金屬鋰與電解質(zhì)的持續(xù)副反應(yīng)和提高金屬鋰負(fù)極安全性方面,全固態(tài)金屬鋰離子電池應(yīng)該具有優(yōu)勢(shì),的確是未來(lái)最要深入研究的電池技術(shù),是值得擁有的夢(mèng)想,要努力奮斗以便盡快尋找到綜合性能指標(biāo)優(yōu)異,同時(shí)安全性和價(jià)格能足應(yīng)用要求的平衡解決方法。
作為有望更快實(shí)現(xiàn)的過(guò)渡技術(shù),含有少量液體電解質(zhì)的混合固液電解質(zhì)鋰離子電池、負(fù)極固態(tài)化的復(fù)合金屬鋰離子電池,有可能在現(xiàn)有液態(tài)電解質(zhì)鋰離子電池的基礎(chǔ)上,逐步提高安全性、能量密度,并保持高倍率特性、低內(nèi)阻、低成本特性,因此有望更快進(jìn)入市場(chǎng),當(dāng)然混合固液電解質(zhì)鋰離子電池也面對(duì)著很多技術(shù)挑戰(zhàn),要逐一克服。無(wú)論是混合固液電解質(zhì)電池還是全固態(tài)電池,無(wú)論是鋰離子還是金屬鋰,最終贏得市場(chǎng),超越依然不斷在發(fā)展的鋰離子電池技術(shù),要通過(guò)扎實(shí)的基礎(chǔ)研究和不懈的努力及目標(biāo)導(dǎo)向的、有效的創(chuàng)新解決方法。
驗(yàn)證技術(shù)能否成功,顯然不能依賴(lài)于新概念的提出、發(fā)表在優(yōu)秀學(xué)術(shù)期刊的文章、大量的引用和申請(qǐng)及授權(quán)的專(zhuān)利,也不能僅僅看到單一技術(shù)指標(biāo)的進(jìn)步,而是要通過(guò)來(lái)自各類(lèi)客戶(hù)和第三方的嚴(yán)格、規(guī)范和系統(tǒng)的測(cè)試數(shù)據(jù)及實(shí)際應(yīng)用驗(yàn)證結(jié)果。