鉅大LARGE | 點(diǎn)擊量:1738次 | 2020年10月20日
高鎳三元給正極帶來的影響有什么
同比例NCM材料的優(yōu)勢(shì)不同,可以根據(jù)具體的應(yīng)用要求加以選擇。Ni表現(xiàn)高的容量,低的安全性;Co表現(xiàn)高成本,高穩(wěn)定性;Mn表現(xiàn)高安全性、低成本。要想提高電池的能量密度,提升車輛續(xù)駛里程,當(dāng)前主流觀點(diǎn)是在高鎳方向上,提高高鎳三元的安全性達(dá)到車輛使用要求。在三元及前文提及的磷酸鐵鋰、錳酸鋰和鈷酸鋰等成熟商用技術(shù)路線以外,也存在著鋰硫電池,鋰空氣電池以及全固態(tài)電池等多個(gè)技術(shù)方向,但都距離成熟商用還比較遠(yuǎn)。
三元鋰離子電池的電化學(xué)性質(zhì)和安全性重要取決于微觀結(jié)構(gòu)(顆粒形態(tài)和體積結(jié)構(gòu)穩(wěn)定性)
和物理化學(xué)性質(zhì)(Li+擴(kuò)散系數(shù)、電子傳導(dǎo)率、體積膨脹率和化學(xué)穩(wěn)定性)的影響。
Ni新增使循環(huán)性能變差;熱穩(wěn)定性變差;充放電過程中表面反應(yīng)不均勻;反應(yīng)產(chǎn)物中存在大比例的Ni2+,導(dǎo)致材料呈氧化性,緩慢氧化電解質(zhì),過程中放出氣體。
影響一:高鎳循環(huán)性能問題
隨著鎳含量的提高,正極材料的穩(wěn)定性隨之下降。重要表現(xiàn)形式就是循環(huán)充放電的容量損失和高溫環(huán)境容量加速衰減。
?循環(huán)中的容量衰減機(jī)理
循環(huán)過程中存在的容量衰減因素重要有陽離子混排、應(yīng)力誘導(dǎo)微裂紋的出現(xiàn)、生產(chǎn)過程引入雜質(zhì)、導(dǎo)電炭黑的重新分布等,其中以陽離子混排和微裂紋的出現(xiàn)兩個(gè)因素對(duì)容量衰減的用途最為顯著。
陽離子混排,指二價(jià)Ni離子本身體積與鋰離子近似,在放電時(shí)鋰離子大量脫出的時(shí)候,受到外界因素用途,占據(jù)Li離子晶格中位置的現(xiàn)象。離子的錯(cuò)位,帶來晶格類型的改變,其嵌鋰能力也隨之改變。在充放電過程中,正極材料表面脫嵌鋰的壓力最大,速度最快,因此表面常常因?yàn)檫@種陽離子混排帶來表面晶格的變化,這個(gè)現(xiàn)象又被叫做表面重構(gòu)。
Ni含量越高,三價(jià)不穩(wěn)定Ni離子還原成二價(jià)Ni離子的概率就越高,則發(fā)生陽離子混排的機(jī)會(huì)就越多。另外兩種金屬M(fèi)n和Co,雖然也存在混排的可能性,但與Ni相比,則比例小得多。
抑制陽離子混排,研究者重要從以下幾個(gè)角度考慮:
1)采取措施減少二價(jià)Ni離子的生成,從根本上截?cái)喟l(fā)生混排的根源;
2)摻雜與二價(jià)Ni離子體積相近的Mg離子,Mg離子能夠比Ni更早的搶占Li留下的空位,防止了Ni的進(jìn)入。而Mg離子并不直接參與充放電過程,嵌入后就可以穩(wěn)定在位置上,對(duì)材料結(jié)構(gòu)起到支撐用途。
3)調(diào)整正極材料原料中的Ni與Li的摩爾比以及調(diào)整制備工藝,將原材料對(duì)陽離子混排的影響降低。
生產(chǎn)過程引入雜質(zhì),在正極原材料制備過程中,與空氣中水和Co2等的反應(yīng),生成了原本不存在的材料種類,比如碳酸鋰等。當(dāng)材料表面存在較多的Li2CO3,在循環(huán)過程中分解出現(xiàn)氣體,吸附于材料的表面造成活性物質(zhì)與電解液的接觸不佳,極化增大,循環(huán)性能也隨之惡化。
影響二:微裂紋
正極材料在充放電的過程中,體積會(huì)發(fā)生變化,Ni含量越高,體積膨脹的比例越大。裂紋的出現(xiàn)還依賴充放電截止電勢(shì)的大小,所以通常高鎳系層狀氧化物正極的工作電壓(相關(guān)于鋰金屬負(fù)極)不超過4.1V,目的是為了保證不發(fā)生不可逆相變,減小內(nèi)應(yīng)力。
晶體上的裂紋和晶體之間的分離,使得高鎳三元材料正極晶粒必然要承受更大的體積變量。體積循環(huán)變動(dòng)的過程中,一次晶粒內(nèi)部的晶界之間可能出現(xiàn)裂紋,而晶粒與晶粒之間的額距離也會(huì)逐步拉大,出現(xiàn)部分晶粒離開正極獨(dú)立存在的現(xiàn)象。更多的晶面與電解液接觸,形成更多的SEI膜,消耗了電解質(zhì)和活性材料的同時(shí),新增了鋰離子在電極上擴(kuò)散的電阻。
減弱單體電壓范圍內(nèi)的相變趨勢(shì),是抑制微裂紋的方法。研究者目前的重要方向如下。
1)抑制陽離子混排的鎂離子摻雜,包含鎂離子的晶格,膨脹的方向大體一致,可以起到抑制微裂紋的用途;
2)將NCM811材料制備成內(nèi)部均勻嵌入Li2MnO3結(jié)構(gòu)單元的兩相復(fù)合材料,可以減弱體積變化。
影響三:導(dǎo)電物質(zhì)的重新分布
這個(gè)影響因素重要在說NCA,NCM還沒有相關(guān)研究公布。經(jīng)歷了一定周期的循環(huán)以后,導(dǎo)電物質(zhì),在晶粒表面重新分布,或者有一部分脫離活性物質(zhì)晶體,這使得此后的晶體各個(gè)部分,動(dòng)力學(xué)環(huán)境變得不同,進(jìn)而造成晶體裂紋。裂紋出現(xiàn)后的進(jìn)一步影響與前面微裂紋中所述一致。
?高溫環(huán)境容量加速衰減機(jī)理
高溫循環(huán)一定周期后,發(fā)現(xiàn)晶界之間存在大量失去活性的二價(jià)、三價(jià)Ni離子,退出循環(huán)的Ni離子,無法參與電荷補(bǔ)償,電池容量衰減比例近似的與這部分失活離子數(shù)量相當(dāng),推測(cè)高溫低電壓窗口下的容量衰減重要形式是Ni離子的失去活性造成的。
另外,高溫循環(huán),容易帶來正極材料晶格塌陷,從NiO6蛻變?yōu)镹iO,從而失去活性。有試驗(yàn)現(xiàn)象表明,SEI膜的電導(dǎo)率差,也會(huì)造成高溫循環(huán)容量衰減。
電動(dòng)汽車在追求整體性能超越傳統(tǒng)燃油車的大背景下,關(guān)于能量密度的追求可以說是動(dòng)力鋰離子電池十年以上的熱點(diǎn)。同時(shí)出現(xiàn)的安全問題,則是電池大規(guī)模商用化必須邁過去的門檻。而動(dòng)力鋰電池包內(nèi)的其他設(shè)備的進(jìn)步,比如電池管理系統(tǒng),比如各種傳感器等等,也能在進(jìn)程中彌補(bǔ)一部分電池安全性的不足。