黄网站免费现在看_2021日韩欧美一级黄片_天天看视频完全免费_98色婷婷在线

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

你了解什么因素影響鋰離子電池的低溫性能嗎?

鉅大LARGE  |  點擊量:635次  |  2021年04月13日  

低溫條件下,鋰離子電池的有效放電容量和有效放電能量都會有明顯的下降,同時其在低于-10℃的環(huán)境下幾乎不可充電,這嚴重制約著鋰離子電池的應用。


隨著鋰離子電池在電動汽車及特種領(lǐng)域應用的迅速發(fā)展,其低溫性能不能適應特殊低溫天氣或極端環(huán)境的缺點也愈發(fā)明顯。低溫條件下,鋰離子電池的有效放電容量和有效放電能量都會有明顯的下降,同時其在低于-10℃的環(huán)境下幾乎不可充電,這嚴重制約著鋰離子電池的應用。


鋰離子電池低溫性能影響因素


鋰離子電池重要由正極材料、負極材料、隔膜、電解液組成。處于低溫環(huán)境的鋰離子電池存在著放電電壓平臺下降、放電容量低、容量衰減快、倍率性能差等特點。制約鋰離子電池低溫性能的因素重要有以下幾點:


◆正極結(jié)構(gòu)

過針刺 低溫防爆18650 2200mah
符合Exic IIB T4 Gc防爆標準

充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%

正極材料的三維結(jié)構(gòu)制約著鋰離子的擴散速率,低溫下影響尤其明顯。鋰離子電池的正極材料包括商品化的磷酸鐵鋰、鎳鈷錳三元材料、錳酸鋰、鈷酸鋰等,也包括處于開發(fā)階段的高電壓正極材料如鎳錳酸鋰、磷酸鐵錳鋰、磷酸釩鋰等。


不同正極材料具有不同的三維結(jié)構(gòu),目前用作電動汽車動力鋰電池的正極材料重要是磷酸鐵鋰、鎳鈷錳三元材料和錳酸鋰。


吳文迪等研究了磷酸亞鐵鋰離子電池與鎳鈷錳三元電池在-20℃的放電性能,發(fā)現(xiàn)磷酸鐵鋰離子電池在-20℃的放電容量只能達到常溫容量的67.38%,而鎳鈷錳三元電池能夠達到70.1%。杜曉莉等發(fā)現(xiàn)錳酸鋰離子電池在-20℃的放電容量可以達到常溫容量的83%。


◆高熔點溶劑


由于電解液混合溶劑中存在高熔點溶劑,鋰離子電池電解液在低溫環(huán)境下黏度增大,當溫度過低時會發(fā)生電解液凝固現(xiàn)象,導致鋰離子在電解液中傳輸速率降低。

無人船智能鋰電池
IP67防水,充放電分口 安全可靠

標稱電壓:28.8V
標稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應用領(lǐng)域:勘探測繪、無人設備

◆鋰離子擴散速率


低溫環(huán)境下鋰離子在石墨負極中的擴散速率降低。向宇系統(tǒng)研究了石墨負極對鋰離子電池低溫放電性能的影響,提出低溫環(huán)境下鋰離子電池的電荷遷移阻抗增大,導致鋰離子在石墨負極中的擴散速率降低是影響鋰離子電池低溫性能的重要原因。


◆SEI膜


低溫環(huán)境下,鋰離子電池負極的SEI膜增厚,SEI膜阻抗增大導致鋰離子在SEI膜中的傳導速率降低,最終鋰離子電池在低溫環(huán)境下充放電形成極化降低充放電效率。


總結(jié)


目前多因素影響著鋰離子電池的低溫性能,如正極的結(jié)構(gòu)、鋰離子在電池各部分的遷移速率、SEI膜的厚度及化學成分以及電解液中鋰鹽和溶劑的選擇等。


低溫性能限制了鋰離子電池在電動汽車領(lǐng)域、特種領(lǐng)域及極端環(huán)境中的應用,開發(fā)低溫性能優(yōu)異的鋰離子電池是市場的迫切需求。1、層狀結(jié)構(gòu)正極材料的低溫特性


層狀結(jié)構(gòu),既擁有一維鋰離子擴散通道所不可比擬的倍率性能,又擁有三維通道的結(jié)構(gòu)穩(wěn)定性,是最早商用的鋰離子電池正極材料。其代表性物質(zhì)有LiCoO2、Li(Co1-xNix)O2和Li(Ni,Co,Mn)O2等。


謝曉華等以LiCoO2/MCMB為研究對象,測試了其低溫充放電特性。


結(jié)果顯示,隨著溫度的降低,其放電平臺由3.762V(0℃)下降到3.207V(–30℃);其電池總?cè)萘恳灿?8.98mAh(0℃)銳減到68.55mAh(–30℃)。


2、尖晶石結(jié)構(gòu)正極材料的低溫特性


尖晶石結(jié)構(gòu)LiMn2O4正極材料,由于不含Co元素,故而具有成本低、無毒性的優(yōu)勢。


然而,Mn價態(tài)多變和Mn3+的Jahn-Teller效應,導致該組分存在著結(jié)構(gòu)不穩(wěn)定和可逆性差等問題。


彭正順等指出,不同制備方法對LiMn2O4正極材料的電化學性能影響較大,以Rct為例:高溫固相法合成的LiMn2O4的Rct明顯高于溶膠凝膠法合成的,且這一現(xiàn)象在鋰離子擴散系數(shù)上也有所體現(xiàn)。究其原因,重要是由于不同合成方法對產(chǎn)物結(jié)晶度和形貌影響較大。


3、磷酸鹽體系正極材料的低溫特性


LiFePO4因絕佳的體積穩(wěn)定性和安全性,和三元材料一起,成為目前動力鋰電池正極材料的主體。磷酸鐵鋰低溫性能差重要是因為其材料本身為絕緣體,電子導電率低,鋰離子擴散性差,低溫下導電性差,使得電池內(nèi)阻新增,所受極化影響大,電池充放電受阻,因此低溫性能不理想。


谷亦杰等在研究低溫下LiFePO4的充放電行為時發(fā)現(xiàn),其庫倫效率從55℃的100%分別下降到0℃時的96%和–20℃時的64%;放電電壓從55℃時的3.11V遞減到–20℃時的2.62V。


Xing等利用納米碳對LiFePO4進行改性,發(fā)現(xiàn),添加納米碳導電劑后,LiFePO4的電化學性能對溫度的敏感性降低,低溫性能得到改善;改性后LiFePO4的放電電壓從25℃時的3.40V下降到–25℃時的3.09V,降低幅度僅為9.12%;且其在–25℃時電池效率為57.3%,高于不含納米碳導電劑的53.4%。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力