鉅大LARGE | 點(diǎn)擊量:1923次 | 2018年12月27日
仿真技術(shù)在鋰離子電池極片軋制中的應(yīng)用介紹
隨著國(guó)內(nèi)外對(duì)電池極片軋制設(shè)備的高速、高精度發(fā)展需求,促使仿真技術(shù)研究極片軋制的課題越來越多。介紹了非對(duì)稱涂布的電池極片軋制仿真分析,仿真結(jié)果說明液壓伺服加壓式極片軋機(jī)能夠軋制非對(duì)稱涂布電池極片,克服了氣液增壓泵加壓式電池極片軋機(jī)對(duì)此類極片無法正常軋制的缺點(diǎn)。綜述了仿真技術(shù)在液壓領(lǐng)域和熱輥壓機(jī)方面的研究進(jìn)展,并進(jìn)行了總結(jié)及其所存在的不足。
引言
近年來新能源行業(yè)蓬勃發(fā)展,給鋰離子電池行業(yè)帶來了巨大的發(fā)展空間,同時(shí)對(duì)鋰離子電池的質(zhì)量和壽命等也提出了更高的要求。在鋰離子電池的生產(chǎn)過程中,極片的制造完成決定了電池80%以上的性能。因此,正負(fù)極片質(zhì)量的好壞對(duì)鋰離子電池的好壞有重大的影響,極片的制造在電池制造工藝中占有重要的地位。
國(guó)內(nèi)外大量研究表明,正負(fù)極片的壓實(shí)密度對(duì)鋰離子電池的容量等電池性能有較大的影響,合適的壓實(shí)密度可以增大電池的容量,減少內(nèi)阻,減少極化損失等。軋制后的電池極片密度的均勻性和厚度的一致性直接決定著電池使用壽命的長(zhǎng)短和儲(chǔ)能的多少。可見,用軋機(jī)對(duì)極片進(jìn)行軋制是生產(chǎn)極片過程中極其重要的一道工序,由于極片軋機(jī)對(duì)電池生產(chǎn)的重要性,也必然要求軋制設(shè)備向高精度,自動(dòng)化發(fā)展。
仿真技術(shù)以數(shù)學(xué)模型的建立、驗(yàn)證、實(shí)驗(yàn)為核心,綜合計(jì)算機(jī)技術(shù)、自動(dòng)控制及系統(tǒng)工程、信息處理技術(shù)等多學(xué)科。用計(jì)算機(jī)對(duì)設(shè)備系統(tǒng)進(jìn)行仿真的一般過程如下:
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
(1)建立所研究的控制系統(tǒng)數(shù)學(xué)模型。
(2)通過仿真軟件把數(shù)學(xué)模型轉(zhuǎn)化為計(jì)算機(jī)仿真模型。
(3)采用合適的算法編寫仿真程序或者直接采用他人程序。
(4)通過仿真,得到系統(tǒng)的動(dòng)態(tài)響應(yīng)曲線和數(shù)據(jù)。
(5)分析系統(tǒng)仿真結(jié)果,提出提高系統(tǒng)動(dòng)態(tài)性能的方法和措施。
標(biāo)稱電壓:28.8V
標(biāo)稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測(cè)繪、無人設(shè)備
隨著計(jì)算機(jī)技術(shù)和科技的不斷發(fā)展,人們可以利用仿真技術(shù)方便的分析軋機(jī)設(shè)備系統(tǒng)動(dòng)態(tài)性能,確定最優(yōu)參數(shù),獲得最佳的設(shè)備控制系統(tǒng)。電池極片負(fù)載特性是非線性的,軋制過程負(fù)載也隨時(shí)間變化,電池極片軋機(jī)的伺服控制系統(tǒng)具有非線性和時(shí)變性,進(jìn)而有必要對(duì)電池極片的軋制過程進(jìn)行仿真研究,以了解各個(gè)因素對(duì)電池極片軋制質(zhì)量和軋制效率的影響規(guī)律,對(duì)后續(xù)電池極片軋機(jī)的設(shè)計(jì)具有重要的理論指導(dǎo)意義。因此,仿真技術(shù)已成為鋰電軋機(jī)設(shè)備系統(tǒng)設(shè)計(jì)的重要輔助手段之一。
國(guó)內(nèi)外通過仿真技術(shù)研究軋機(jī)的課題越來越多,非對(duì)稱涂布電池極片軋制仿真分析是應(yīng)用仿真技術(shù)的典型課題,與此同時(shí),提出了許多仿真技術(shù)在液壓領(lǐng)域的應(yīng)用課題。此外,仿真技術(shù)在熱輥壓機(jī)中的應(yīng)用課題也備受關(guān)注。因此,本文分別從以下三方面進(jìn)行介紹及綜述。
1非對(duì)稱涂布電池極片軋制仿真分析
電池極片的涂布方式有對(duì)稱涂布與非對(duì)稱涂布。因?yàn)閷?shí)際使用氣液增壓泵加壓式電池極片軋機(jī)對(duì)非對(duì)稱涂布的電池極片的軋制效果差,由此,北京北方華創(chuàng)新能源鋰電裝備技術(shù)有限公司與王益群等人合作以該司軋機(jī)為主要研究對(duì)象,分別對(duì)氣液增壓泵加壓式電池極片軋機(jī)和液壓伺服控制加壓式極片軋機(jī)進(jìn)行非對(duì)稱涂布電池極片軋制仿真分析。
1.1氣液增壓泵加壓式電池極片軋機(jī)
氣液增壓泵加壓方式電池極片軋機(jī)成本較低,能夠軋制對(duì)稱涂布的電池極片,但是它采用楔鐵和絲杠離線調(diào)節(jié)輥縫,不能對(duì)軋輥間隙和軋制力進(jìn)行實(shí)時(shí)在線調(diào)節(jié),使其軋制速度、極片的質(zhì)量及應(yīng)用范圍受到一定程度的制約。
研究者們基于氣液增壓泵加壓式電池極片結(jié)構(gòu)與軋制特性的分析,建立的電池極片模型及軋機(jī)軋制極片過程的仿真模型如圖1所示。由于實(shí)際使用氣液增壓泵加壓式電池極片軋機(jī)對(duì)非對(duì)稱涂布的電池極片(其示意圖如圖2所示)的軋制效果差,下面對(duì)此種情況進(jìn)行仿真分析,仿真結(jié)果如圖3所示。
通過仿真結(jié)果可以看出在極片從雙層滾壓到單層時(shí),作用在極片上的軋制力由346kN減小到96kN,單層部分的密實(shí)度不能滿足要求。油缸壓力與輥縫間隙是根據(jù)雙層部分的軋制需要進(jìn)行離線設(shè)定的,一旦設(shè)定,就不能改變。作用在單層上的軋制力是由軋輥和楔鐵的剛度決定的,是不可調(diào)節(jié)的。軋輥的剛度越大,作用在單層上的力就越小。在軋輥滾壓到極片間隙時(shí),軋輥與極片脫開,作用在極片上的力為零。
1.2液壓伺服控制加壓式極片軋機(jī)
液壓伺服控制加壓式極片軋機(jī)不再使用楔鐵調(diào)節(jié)輥縫值,液壓缸壓力能夠完全作用在電池極片上,為了能夠?qū)崟r(shí)控制作用在電池極片上壓力和液壓缸活塞位置,加壓系統(tǒng)采用閥控缸的液壓伺服控制系統(tǒng)。由于沒有楔鐵,當(dāng)使用位置環(huán)軋制時(shí),可以實(shí)現(xiàn)負(fù)的預(yù)輥縫軋制,不再像氣液增壓泵加壓式極片軋機(jī)那樣使用塞尺檢測(cè)輥縫,只能設(shè)定正值輥縫,克服了由于楔鐵的作用而使有效軋制力不能不斷提高的缺點(diǎn)。
氣液增壓泵加壓式電池極片軋機(jī)無法軋制非對(duì)稱涂布電池極片,由于在做軋制實(shí)驗(yàn)時(shí)沒有非對(duì)稱涂布的電池極片,研究人員對(duì)非對(duì)稱涂布情況進(jìn)行恒軋制力的仿真分析,仿真結(jié)果如圖4所示。通過仿真結(jié)果可以看出,軋輥從雙側(cè)涂布漿料部分滾壓到單側(cè)涂布部分時(shí),軋制力有一個(gè)減小的波動(dòng),但是能夠迅速恢復(fù)到設(shè)定的軋制力值,能夠保證軋制力基本恒定。說明可以采用本課題所設(shè)計(jì)的軋機(jī)軋制此類電池極片,克服了氣液增壓泵加壓式電池極片軋機(jī)的缺點(diǎn)。
伺服加壓式電池極片軋機(jī)壓力設(shè)定值可以在線實(shí)時(shí)調(diào)節(jié),在軋制非對(duì)稱涂布的電池極片時(shí),還可以根據(jù)工藝要求,使雙層涂布與單層涂布的地方使用不同的軋制力或不同的輥縫軋制,進(jìn)一步加大了軋機(jī)的應(yīng)用范圍。
傳遞的力和功率大的液壓伺服控制系統(tǒng)的引入使得極片軋機(jī)能夠?qū)崿F(xiàn)壓力和輥縫的在線實(shí)時(shí)調(diào)節(jié),軋制單雙層交替涂布的極片時(shí),單層部分也能得到比較好的軋制效果,使得軋制極片的質(zhì)量大大提高。但是由于極片涂布形式的多樣,極片間隙處厚度突然變薄,極片負(fù)載的突變,還是影響了軋制速度的進(jìn)一步提高。極片軋機(jī)具有非線性和時(shí)變性,電池極片負(fù)載也是非線性的,也都對(duì)軋機(jī)的設(shè)計(jì)與控制提出了挑戰(zhàn)。
2仿真技術(shù)在液壓領(lǐng)域的應(yīng)用
所謂液壓系統(tǒng)仿真就是建立所研究液壓系統(tǒng)的數(shù)學(xué)模型,并轉(zhuǎn)化為計(jì)算機(jī)上的仿真模型,然后進(jìn)行求解運(yùn)算來分析所研究系統(tǒng)的動(dòng)靜態(tài)特性的過程。
液壓系統(tǒng)仿真不僅可以找出現(xiàn)有系統(tǒng)的缺陷所在,提出對(duì)系統(tǒng)的改進(jìn)措施,對(duì)系統(tǒng)進(jìn)行實(shí)質(zhì)上的改進(jìn)和修正;而且可以對(duì)系統(tǒng)設(shè)計(jì)過程中的某些參數(shù)進(jìn)行檢驗(yàn)分析,確保系統(tǒng)具有良好的動(dòng)態(tài)性能。在實(shí)際項(xiàng)目中,所研究?jī)?nèi)容要在系統(tǒng)最脆弱的地方展開分析。這種情況下要忽略一些次要矛盾,突出主要矛盾,做到有的放矢,解決問題的關(guān)鍵。
液壓系統(tǒng)計(jì)算機(jī)仿真的關(guān)鍵和難點(diǎn)在于:一建立描述液壓系統(tǒng)的準(zhǔn)確數(shù)學(xué)模型,二是合理的編寫仿真程序。一個(gè)準(zhǔn)確的數(shù)學(xué)模型的建立是仿真的基礎(chǔ)和前提,目前建立數(shù)學(xué)模型的常用方法主要有傳遞函數(shù)法、解析建模法和功率鍵合圖法。
仿真技術(shù)的應(yīng)用在液壓領(lǐng)域主要包括下面幾個(gè)方面
(1)設(shè)計(jì)液壓系統(tǒng)時(shí),通過理論推導(dǎo)建立所設(shè)計(jì)液壓系統(tǒng)的數(shù)學(xué)模型,經(jīng)過仿真,把仿真數(shù)據(jù)和實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比來驗(yàn)證所建立數(shù)學(xué)模型的準(zhǔn)確性,并把經(jīng)過驗(yàn)證的數(shù)學(xué)模型作為以后改進(jìn)和設(shè)計(jì)類似系統(tǒng)的依據(jù)。
(2)利用建立的數(shù)學(xué)模型和仿真模型,通過仿真實(shí)驗(yàn)來確定已知系統(tǒng)參數(shù)的調(diào)整范圍,從而縮短系統(tǒng)的調(diào)整時(shí)間,提高效率。
(3)通過仿真實(shí)驗(yàn),研究所建液壓系統(tǒng)的可行性,以及各個(gè)液壓元件參數(shù)對(duì)系統(tǒng)的影響,最后獲得最佳的元件參數(shù)和控制方案。
(4)利用仿真技術(shù)研究新設(shè)計(jì)元件各結(jié)構(gòu)參數(shù)對(duì)系統(tǒng)動(dòng)態(tài)特性的影響,確定元件合適的結(jié)構(gòu)參數(shù)。
電池極片軋機(jī)液伺服控制系統(tǒng)的設(shè)計(jì),主要解決傳統(tǒng)極片軋機(jī)依靠楔鐵絲杠調(diào)節(jié)輥縫所帶來的缺陷,實(shí)現(xiàn)恒輥縫和恒軋制力制,提高軋制速度。利用仿真驗(yàn)證所設(shè)計(jì)液壓伺服系統(tǒng)的準(zhǔn)確性,并研究提高極片軋機(jī)伺服系統(tǒng)性能的措施。
董敏等人為了全面研究軋機(jī)液壓厚控系統(tǒng)動(dòng)態(tài)特性,建立直觀真實(shí)的虛擬軋機(jī)模型,提出基于AMESim和ADAMS聯(lián)合建模的仿真方法。在ADAMS中構(gòu)造軋機(jī)實(shí)體剛?cè)狁詈蟿?dòng)力學(xué)模型,實(shí)現(xiàn)了軋機(jī)的負(fù)載特性研究;在AMESim中建立液壓系統(tǒng)物理模型,實(shí)現(xiàn)了液壓伺服系統(tǒng)精確建模和分析,兩者通過接口實(shí)現(xiàn)數(shù)據(jù)交換,保證了液壓系統(tǒng)模擬的準(zhǔn)確性和負(fù)載系統(tǒng)模擬的真實(shí)性。通過聯(lián)合仿真模型得到了系統(tǒng)實(shí)時(shí)響應(yīng)以及出口板厚實(shí)時(shí)數(shù)據(jù),將模型仿真輸出數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)進(jìn)行比較,證明仿真模型能準(zhǔn)確體現(xiàn)系統(tǒng)動(dòng)態(tài)響應(yīng),并能體現(xiàn)機(jī)械部件在載荷下彈性變形和板厚實(shí)時(shí)輸出情況。
Liu等人為了提高極片軋機(jī)軋制效率和軋板的質(zhì)量,建立了液壓系統(tǒng)的動(dòng)態(tài)仿真模型,給出負(fù)載特性方程,模擬了恒軋制力、恒輥縫等軋制過程,仿真與實(shí)驗(yàn)結(jié)果基本一致。該課題組以北京北方華創(chuàng)新能源鋰電裝備技術(shù)有限公司液壓伺服加壓式電池極片軋機(jī)為依托,分析了液壓伺服加壓式極片軋機(jī)液壓系統(tǒng),建立液壓泵、蓄能器和減壓閥等的動(dòng)態(tài)仿真模型,對(duì)模型進(jìn)行仿真,并作了相應(yīng)的實(shí)驗(yàn),對(duì)元件模型進(jìn)行了實(shí)驗(yàn)驗(yàn)證。在元件模型的基礎(chǔ)上對(duì)整個(gè)液壓系統(tǒng)進(jìn)行建模,使得建立的系統(tǒng)模型考慮了液壓泵和蓄能器對(duì)伺服閥前壓力的影響,減壓閥對(duì)伺服缸背壓的影響。在模型上對(duì)閉環(huán)軋制力階躍響應(yīng)和軋制過程進(jìn)行動(dòng)態(tài)仿真分析,并在所研究極片軋機(jī)上作了相應(yīng)的實(shí)驗(yàn),仿真結(jié)果與實(shí)驗(yàn)結(jié)果基本一致,驗(yàn)證了模型的正確性,所建立的仿真模型具有實(shí)際參考價(jià)值,為液壓控制系統(tǒng)參數(shù)優(yōu)化提供了重要依據(jù)。
3仿真技術(shù)在熱輥壓機(jī)中的應(yīng)用
熱輥壓機(jī)是指能加熱軋輥的輥壓機(jī),當(dāng)利用熱輥壓機(jī)輥壓極片時(shí),可提高極片的壓實(shí)密度、質(zhì)量和生產(chǎn)速度。運(yùn)用不同的加熱工藝對(duì)軋輥進(jìn)行加熱的加熱過程、輥面溫度分布均勻性和能耗進(jìn)行分析,并在此基礎(chǔ)上對(duì)不同結(jié)構(gòu)軋輥的加熱過程、輥面溫度分布均勻性和熱應(yīng)力進(jìn)行分析,對(duì)指導(dǎo)現(xiàn)場(chǎng)加熱工藝,改進(jìn)軋輥結(jié)構(gòu),提高極片軋制質(zhì)量有著重大的意義。國(guó)內(nèi)外對(duì)軋輥的研究主要分為兩個(gè)方面:1)加熱軋輥的方式及其相應(yīng)的控制系統(tǒng),對(duì)軋輥的加熱方式主要包括電加熱和油加熱;2)軋輥的溫度分布和內(nèi)部應(yīng)力等。
王文成等人研究了感應(yīng)加熱下圓柱體的電磁場(chǎng)和溫度場(chǎng),指出電磁加熱具備精度高,能耗低等特點(diǎn),并開發(fā)了軋輥感應(yīng)加熱系統(tǒng);李徽通過實(shí)際生產(chǎn)論述了邊部加熱器在熱軋寬帶鋼生產(chǎn)中的應(yīng)用,通過對(duì)軋輥邊部進(jìn)行加熱,有利于提高熱軋鋼板凸度精度。
申世杰等人利用有限元軟件對(duì)萬能軋機(jī)進(jìn)行了溫度分析、熱力耦合分析和疲勞壽命研究,指出輥頸與輥身之間的圓角處是熱應(yīng)力集中的位置,此處最危險(xiǎn),增大輥頸的直徑和倒角,可使應(yīng)力集中得到明顯改善;胡仕成等人建立了軋輥輥套和鑄壞之間的接觸導(dǎo)熱模型和傳熱數(shù)學(xué)模型,對(duì)軋輥和鑄坯進(jìn)行了仿真分析,軋輥輥套的粗糙度越低,其導(dǎo)熱能力越強(qiáng);王永洲等人對(duì)軋機(jī)軋輥進(jìn)行了應(yīng)力分析和模態(tài)分析;羅麗萍等人通過有限元軟件對(duì)軋輥表面電渣加熱和渣池?zé)犭妶?chǎng)進(jìn)行了模擬研究,分析渣池內(nèi)的溫度分布。
王興東等人運(yùn)用傳熱學(xué)知識(shí)及有限元軟件進(jìn)行仿真分析的方法,通過更改橫向油道與輥面之間的距離δ,按照同種加熱工藝對(duì)三種不同結(jié)構(gòu)的軋輥進(jìn)行加熱。給出了軋輥內(nèi)部應(yīng)變圖如圖5所示,δ=70mm輥面的應(yīng)變?yōu)?.53mm/m,δ=50mm輥面的應(yīng)變?yōu)?.61mm/m,說明δ越小,輥面的變形越大;并利用有限元軟件對(duì)軋輥進(jìn)行溫度和應(yīng)力分析。分析結(jié)果表明δ值越小,加熱時(shí)間越短,輥面的溫差越?。蝗N不同結(jié)構(gòu)軋輥的最大應(yīng)力和應(yīng)變差別不大;δ越小,油道處的應(yīng)力越大,為改進(jìn)軋輥內(nèi)部油道結(jié)構(gòu)提供理論依據(jù)。
此外,通過軋輥輥面及內(nèi)部溫度圖6可知,軋輥進(jìn)油端的溫度高于另一端;兩端軸頸表面溫度達(dá)到了100℃以上,應(yīng)選擇耐高溫的軸承;軋輥輥身溫度分布較為均勻,不存在較大的溫差,芯部的溫度高于輥面。該研究還指出,軋輥相當(dāng)于一個(gè)集熱容器,加熱時(shí)間越長(zhǎng),軋輥對(duì)導(dǎo)熱油的吸熱量越少,進(jìn)出口處油溫差越小,導(dǎo)熱油損失的能量越少,軋輥內(nèi)部溫度越均勻,軋輥輥面溫度分布越均勻。
陳國(guó)樑等人運(yùn)用有限元軟件建立了油加熱軋輥模型,對(duì)熱軋輥三維溫度場(chǎng)進(jìn)行分析計(jì)算,分析結(jié)果表明:在軋輥內(nèi)部,溫度的梯度變化主要是徑向的變化,但還有一些溫度梯度沿軸向變化,提高軋輥端部溫度均勻性可改善軋輥溫度分布均勻性。李立新等人通過測(cè)量工作輥表面溫度值,利用有限元軟件建立CSP工作輥溫度場(chǎng)模型,研究了軋制過程中的軋輥的溫度場(chǎng)。蔡輝發(fā)明了一種主要用于加熱軋輥軋輥溫度控制系統(tǒng),將導(dǎo)熱油控制在一定的溫度范圍內(nèi),同時(shí)可以向軋輥內(nèi)部導(dǎo)入常溫導(dǎo)熱油,導(dǎo)熱油被密封在系統(tǒng)中,不結(jié)觸鎂合金板帶,不對(duì)其產(chǎn)生仍何影響,導(dǎo)熱油也不會(huì)污染環(huán)境,從而使軋輥的工作溫度控制在合適的范圍,提高了產(chǎn)品成品率和生產(chǎn)效率,軋制出產(chǎn)品質(zhì)量良好。
Denis等利用有限元軟件對(duì)熱輥壓機(jī)的軋輥進(jìn)行了熱應(yīng)力分析和疲勞壽命分析。Luks等人通過實(shí)驗(yàn)的方法分析了軋輥之間的接觸應(yīng)力和輥面溫度。
綜上所述,目前對(duì)于軋輥的溫度場(chǎng)、應(yīng)力場(chǎng)和使用壽命研究得比較多,有必要進(jìn)一步對(duì)油加熱的軋輥如軋輥輥面溫度分布、加熱過程和能耗、應(yīng)力應(yīng)變等進(jìn)行深入的分析,如探討油道數(shù)量對(duì)軋輥的輥面溫差、加熱過程及應(yīng)力等的影響。
4結(jié)語
經(jīng)過實(shí)驗(yàn)驗(yàn)證了的電池極片軋機(jī)模型上,進(jìn)行了非對(duì)稱涂布的電池極片的虛擬軋制,仿真結(jié)果說明了氣液增壓泵加壓式電池極片軋機(jī)無法正常軋制非對(duì)稱涂布的電池極片,而液壓伺服加壓式電池極片軋機(jī)能夠軋制類似的電池極片。仿真技術(shù)的應(yīng)用為液壓控制策略的改進(jìn)提供了有效的模型平臺(tái)。對(duì)軋輥的加熱過程和應(yīng)力等有待進(jìn)行深入的仿真分析。
在仿真分析過程中,改變模型參數(shù),可以模擬實(shí)際物理系統(tǒng)中各個(gè)元件,機(jī)械部件等參數(shù)的變化,從而可以了解這些實(shí)際參數(shù)的變化對(duì)整個(gè)系統(tǒng)的影響,便于尋找影響系統(tǒng)性能的主要因素。這些都非常利于設(shè)備的改進(jìn)設(shè)計(jì),提高設(shè)備的性能,縮短設(shè)計(jì)周期,調(diào)高效率。對(duì)于特別的控制系統(tǒng),還可以在仿真模型上進(jìn)行控制算法的仿真實(shí)驗(yàn),便于探索更好的提高系統(tǒng)性能的控制算法,減小進(jìn)行多次物理實(shí)驗(yàn)的時(shí)間和財(cái)力投入。
在理論計(jì)算和仿真分析過程中,采用了很多假設(shè)條件,運(yùn)用實(shí)驗(yàn)關(guān)聯(lián)式求解,存在較大誤差,因此還需進(jìn)一步修正仿真分析中的邊界條件。