黄网站免费现在看_2021日韩欧美一级黄片_天天看视频完全免费_98色婷婷在线

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

動力電池要不要用金屬鋰作為負極

鉅大LARGE  |  點擊量:2751次  |  2019年01月09日  

一個殘酷事實就是,當前無論是從最基礎(chǔ)的材料到反應(yīng)界面,再到電池的理論研究和實驗,以及更遠處的規(guī)模產(chǎn)業(yè)化以應(yīng)用,都還沒有從根本上解決一些基礎(chǔ)難題。

固態(tài)電池的研究始于上個世紀八十年代,相關(guān)技術(shù)從不成熟走向成熟,從實驗室走向工廠,從工廠走向終端設(shè)備實現(xiàn)規(guī)模化應(yīng)用和普及,動輒十幾年甚至幾十年已經(jīng)過去了,注定這條路是漫長而艱苦的。

歷史上,在實驗室中開發(fā)出的很大比例的新技術(shù),真正成功實現(xiàn)工業(yè)化的只屬于少數(shù)。

一項新技術(shù)從實驗走向應(yīng)用,首先要在實驗室中搞清楚其基本機理,繼而確定可以用來放大工業(yè)化的技術(shù)路線,最后經(jīng)過中試穩(wěn)定過后實現(xiàn)規(guī)模量產(chǎn)。而大多數(shù)時候,一項新技術(shù)得以工業(yè)化的最基本前提就是“簡單粗暴”,只有這樣才能“易于理解”,只有易于理解才能最終落實給生產(chǎn)線上的作業(yè)人員,以標準化的工序放大生產(chǎn)。同時在生產(chǎn)過程中積累經(jīng)驗教訓,在每一個環(huán)節(jié)中精益求精地改進,每一個細節(jié)都實現(xiàn)可控化,最終大規(guī)模生產(chǎn)出足夠一致性和穩(wěn)定性的產(chǎn)品。

而這期間,上游產(chǎn)業(yè)鏈如原材料、生產(chǎn)設(shè)備的配合更是必不可少。

這樣看來,固態(tài)電池還處于第一個階段,即還處于在實驗室中進行最基本的機理研究,解決一些基本問題的階段。

固態(tài)電池要想成功實現(xiàn)產(chǎn)業(yè)化,甚至作為動力電池被大規(guī)模應(yīng)用上車,至少需要翻越四座大山,而這幾座大山以目前技術(shù)水平來看,跨過的難度都是極大的。

第一座大山就是要不要用金屬鋰作為負極?

這個答案幾乎是毋庸置疑的。因為如果不用金屬鋰負極的話,那么固態(tài)電池的實現(xiàn)將沒有任何意義。根據(jù)中國科學院物理研究所李泓老師的研究,如果使用現(xiàn)有的正負極材料,由于固態(tài)電解質(zhì)的真實密度顯著高于液態(tài)電解質(zhì),為了獲得較低的接觸電阻,固態(tài)電解質(zhì)體積占比一般會顯著高于液態(tài)電解質(zhì)電池,因此固態(tài)電池的能量密度必然低于液態(tài)電解質(zhì)電池,而不是如新聞中宣稱的會數(shù)倍于鋰離子電池。

這說明如果不改變現(xiàn)有正負極體系,不用鋰金屬作為負極,只是單純把液態(tài)電解質(zhì)更換為固態(tài)電解質(zhì),是無法從根本上提升固態(tài)電池的能量密度的。因為固態(tài)電解質(zhì)的使用,在提升能量密度上來說不僅相對于現(xiàn)有的三元正極+液態(tài)電解質(zhì)+硅碳負極改變不大,甚至還拖了后腿。

負極如果使用了金屬鋰,不僅因為能夠提供更多的鋰離子而大幅提升整個電芯的能量密度,還能有效解決液態(tài)電解質(zhì)中存在的鋰枝晶穿刺隔膜,高溫下與液態(tài)電解質(zhì)發(fā)生持續(xù)副反應(yīng)、鋰的生長和析出導致的界面結(jié)構(gòu)不穩(wěn)定等問題。

 第一座大山就是要不要用金屬鋰作為負極?

所以說,采用鋰金屬作為負極材料是勢在必行。那么你以為就是單純的采用這么簡單了?

用一個業(yè)內(nèi)朋友的話講,制造金屬鋰負極材料的工藝要求,高到變態(tài)。因為需要類比芯片制造的超凈車間,所以需要全程在手套箱中進行?,F(xiàn)實在實驗室中,加工一小片試驗用的鋰金屬片,往往一個研究人員在手套箱中操作即可,但你能想象一旦要實現(xiàn)規(guī)?;a(chǎn),在一個類似手套箱的車間中,幾十米長的鋰金屬片像現(xiàn)在涂在銅箔上的石墨那樣運行嗎?

除了高到難以想象的大規(guī)模制造難度以外,更大的問題還在于制作過程的安全性。這一點,我們拿當前各大電池廠都在重點發(fā)展的補鋰工藝作為參照說明一下問題。

為了補充鋰電池負極在首次充電過程中不可逆的容量損失(鋰離子數(shù)量變少),電池廠希望通過補鋰設(shè)備直接向負極極片噴涂金屬鋰粉或鋰箔的方式進行補鋰,以此達到提升首次庫倫效率和電池容量的目的。

聽著很簡單,實際操作起來卻極難。作為補鋰原料的金屬鋰是高反應(yīng)活性的堿金屬,屬于非常危險的物品,鬧不好就會著火和爆炸。而從補鋰方式說,撒鋰粉面臨的問題是鋰粉比表面積很大,容易飄,有被人體吸入的風險;壓鋰帶的難題是又壓不了那么薄,會導致補鋰過量,長期使用存在安全隱患。

除了生產(chǎn)和使用過程危險,補鋰設(shè)備采購費用高以外,由于金屬鋰能夠與水劇烈反應(yīng),所以對生產(chǎn)環(huán)境要求相當之苛刻,這就需要對生產(chǎn)車間和生產(chǎn)線進行改造。所以當前,沒有足夠經(jīng)濟實力和技術(shù)能力的電池廠輕易不敢碰補鋰工藝。

有朋友向筆者透露過一個消息,即便是寧德時代,依然曾經(jīng)在嘗試補鋰的小試中出了事故。

說了這么多,只是想說明一個道理:對于直接采用金屬鋰作為負極的方式來說,補鋰工藝只能算是一個小case,只能算是金屬鋰負極材料的工藝技術(shù)和生產(chǎn)實踐的折中方案和必經(jīng)步驟而已,真正要規(guī)模制造和使用鋰金屬負極材料,難度要比補鋰大太多太多。

這里插播一條小故事,實際上早在上個世紀60年代,國外就已經(jīng)開始金屬鋰作為負極材料的研究。80年代,美國一家鋰電池新星EoneMoli冉冉升起,其獨家技術(shù)正是采用金屬鋰負極。時年最火的時候,意圖布局電動汽車的福特公司都想投資這家公司并采用其鋰電池作為汽車動力。之后Moli被日本的NEC和三井公司收購并制造了5萬塊手機電池,不料一年半之后這批電池大量失效,出現(xiàn)了嚴重質(zhì)量問題。

此事造成了三大影響,一是日本公司當時決定永久放棄金屬鋰電池技術(shù)路線;二是當時給Moli公司做技術(shù)顧問的鋰電大牛杰夫·達恩也徹底放棄金屬鋰體系;三是Moli公司被賤賣給一家臺灣企業(yè),至今只混在消費級電池領(lǐng)域(戴森的產(chǎn)品用的就是這家的電池)。

最后,金屬鋰作為負極材料的極大難度還表現(xiàn)在,到目前為止還都沒突破400次循環(huán),離車規(guī)標準還差得很遠。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力