黄网站免费现在看_2021日韩欧美一级黄片_天天看视频完全免费_98色婷婷在线

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

舉2個例子教你電源時序控制的正確方法,你get了沒?

鉅大LARGE  |  點擊量:1617次  |  2020年03月29日  

我們常常想當(dāng)然地為印刷電路板上的電路上電,殊不知這可能造成破壞以及有損或無損閂鎖狀況。隨著片上系統(tǒng)(SoC)IC越來越多,對電源進行時序控制和管理的需求也越來越多


雖然ADI的數(shù)據(jù)手冊通常會提供足夠的信息,指導(dǎo)您針對各IC設(shè)計正確的上電序列。然而,某些IC明確要求定義恰當(dāng)?shù)纳想娦蛄?。在使用多個電源的IC中,如轉(zhuǎn)換器(包括ADC和DAC)、DSP、音頻/視頻、射頻及許多其它混合信號IC中,這一要求相當(dāng)常見。


今天我們就通過2個栗子討論下設(shè)計工程師在新設(shè)計中必須考慮的某些更微妙的電源問題,特別是當(dāng)IC需要多個不同的電源時。目前,一些較常用的電源電壓是:+1.8V、+2.0V、+2.5V、+3.3V、+5V、5V、+12V和12V。


例1


PULSARADC示例絕對最大額定值


ADI的所有數(shù)據(jù)手冊都含有絕對最大額定值(AMR)部分,它說明為避免造成破壞,對引腳或器件可以施加的最大電壓、電流或溫度。AD7654PulSAR16位ADC是采用三個(或更多)獨立電源的混合信號ADC的范例。這些ADC需要數(shù)字電源(DVDD)、模擬電源(AVDD)和數(shù)字輸入/輸出電源(OVDD)。它們是ADC,用于將模擬信號轉(zhuǎn)換成數(shù)字代碼,因此需要一個模擬內(nèi)核來處理傳入的模擬輸入。數(shù)字內(nèi)核負責(zé)處理位判斷過程和控制邏輯。I/O內(nèi)核用于設(shè)置數(shù)字輸出的電平,以便與主機邏輯接口(電平轉(zhuǎn)換)。ADC的電源規(guī)格可以在相應(yīng)數(shù)據(jù)手冊的絕對最大額定值部分找到。表1摘自AD7654數(shù)據(jù)手冊的絕對最大額定值部分。


表1.AD7654的絕對最大額定值


注意,表1中所有三個電源的范圍都是0.3V至+7V。相對于DVDD和OVDD,AVDD的范圍是+7V至7V,這就確認了AVDD和DVDD無論哪一個先上電都是可行的。此外,AVDD和OVDD無論哪一個先上電也是可行的。然而,DVDD與OVDD之間存在限制。技術(shù)規(guī)格規(guī)定,OVDD最多只能比DVDD高0.3V,因此DVDD必須在OVDD之前或與之同時上電。如果OVDD先上電(假設(shè)5V),則DVDD在上電時比OVDD低5V,這不符合絕對最大額定值要求,可能會損壞器件。


模擬輸入INAx、INBx、REFx、INxN和REFGND的限制是:這些輸入不得超過AVDD+0.3V或AGND0.3V。這說明,如果模擬信號或基準電壓源先于AVDD存在,則模擬內(nèi)核很可能會上電到閂鎖狀態(tài)。這通常是一種無損狀況,但流經(jīng)AVDD的電流很容易逐步升至標稱電流的10倍,導(dǎo)致ADC變得相當(dāng)熱。這種情況下,內(nèi)部靜電放電(ESD)二極管變?yōu)檎?,進而使模擬電源上電。為解決這個問題,輸入和/或基準電壓源在ADC上電時應(yīng)處于未上電或未連接狀態(tài)。


同樣,數(shù)字輸入電壓范圍為0.3V至DVDD+0.3V。這說明,數(shù)字輸入必須小于DVDD+0.3V。因此,在上電時,DVDD必須先于微處理器/邏輯接口電路或與之同時上電。與上述模擬內(nèi)核情況相似,這些引腳上的ESD二極管也可能變?yōu)檎?,使?shù)字內(nèi)核上電到未知狀態(tài)。


AD7621、AD7622、AD7623、AD7641和AD7643等PulSARADC速度更快,是該系列的新型器件,采用更低的2.5V電源(AD7654則采用5V電源)。AD7621和AD7623具有明確規(guī)定的上電序列。表2摘自AD7621數(shù)據(jù)手冊的絕對最大額定值部分。


表2.AD7621的絕對最大額定值


同樣,OVDD與DVDD之間存在限制。絕對最大額定值規(guī)定:OVDD必須小于或等于DVDD+0.3V,而DVDD則必須小于2.3V。一旦DVDD在上電期間達到2.3V,該限制便不再適用。如果不遵守該限制,AD7621(和AD7623)可能會受損(見圖1)。


圖1.可能的上電/關(guān)斷序列AD7621


因此,一般上電序列可能是這樣的:AVDD、DVDD、OVDD、VREF。但是,每個應(yīng)用都不一樣,需要具體分析。注意,器件關(guān)斷與器件上電同樣重要,切記遵守同樣的規(guī)格要求。圖1所示為AD7621的典型上電/關(guān)斷序列。


對于這些ADC,模擬輸入和基準電壓源的情況與上文所述相同。對任何模擬輸入引腳施加電壓都可能導(dǎo)致ESD二極管變?yōu)檎瑥亩鼓M內(nèi)核上電到未知狀態(tài)。


這些ADC的數(shù)字輸入和輸出略有不同,因為這些器件應(yīng)支持5V數(shù)字輸入。這些ADC是AD7654的速度升級版本,數(shù)字輸入和輸出均與OVDD電源相關(guān),因為它能支持更高的3.3V電壓。注意:數(shù)字輸入限制為5.5V,而AD7654則為DVDD+0.3V。


例2


Sigma-Delta型ADC示例


AD7794Sigma-Delta型24位ADC是另一個很好的例子。表3摘自AD7794數(shù)據(jù)手冊的絕對最大額定值部分。


表3.AD7794的絕對最大額定值


該ADC的問題與基準電壓有關(guān),它必須小于AVDD+0.3V。因此,AVDD必須先于基準電壓或與之同時上電。


AD7794產(chǎn)品詳情:


最高23位有效分辨率


均方根(RMS)噪聲:40nV(4.17Hz時),85nV(16.7Hz時)


功耗:400A(典型值)


省電模式:最大1A


低噪聲可編程增益儀表放大器


帶隙基準電壓源,典型漂移值為4ppm/C


更新速率:4.17Hz~470Hz


6個差分模擬輸入


內(nèi)部時鐘振蕩器


50Hz/60Hz同時抑制


基準電壓檢測


可編程電流源


電源時序控制器


ADI提供許多電源時序控制器件。一般而言,其工作原理是:當(dāng)?shù)谝粋€調(diào)節(jié)器的輸出電壓達到預(yù)設(shè)閾值時,就會開始一段時間延遲,延遲結(jié)束后才會使能后續(xù)調(diào)節(jié)器上電。關(guān)斷期間的程序與此相似。時序控制器也可以用于控制電源良好信號等邏輯信號的時序,例如:對器件或微處理器施加一個復(fù)位信號,或者簡單地指示所有電源均有效。


最后的建議


如今大部分要求高速和低功耗的電路PCB上都需要多個電源,例如:+1.8V、+2.0V、+2.5V、+3.3V、+5V、5V、+12V和12V。為PCB上的這些電源供電并不是一件輕而易舉的事情。必須仔細分析,設(shè)計一個正確可靠的上電和關(guān)斷序列。采用分立設(shè)計變得越來越困難,解決之道就是采用電源時序控制IC,只要改變一下代碼就能改變上電順序,而不用變更PCB布局布線。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力