鉅大LARGE | 點(diǎn)擊量:1089次 | 2021年12月23日
電動(dòng)汽車鉛酸蓄電池的脈沖快速充電設(shè)計(jì)
引言以動(dòng)力蓄電池為能源的電動(dòng)汽車被認(rèn)為是21世紀(jì)的綠色工程,它的出現(xiàn)將汽車工業(yè)的發(fā)展帶入了一個(gè)全新的領(lǐng)域。目前,電動(dòng)汽車核心部件中的電動(dòng)機(jī)、控制器和車體三大部件在理論和技術(shù)上已較為成熟,而另兩大部件蓄電池、充電器的發(fā)展還不能滿足電動(dòng)汽車的要求,有一些理論和技術(shù)問題還有待攻關(guān),現(xiàn)已成為影響電動(dòng)交通工具發(fā)展的瓶頸。目前,我國的電動(dòng)汽車用動(dòng)力蓄電池大多為鉛酸蓄電池,這重要是由于鉛酸蓄電池具有技術(shù)成熟、成本低、電池容量大、跟隨負(fù)荷輸出特性好、無記憶效應(yīng)等優(yōu)點(diǎn)。當(dāng)然,也有一些高性能電池,比如鋰離子電池、燃料動(dòng)力電池等。鋰離子電池電動(dòng)汽車在深圳已投入試運(yùn)營,由上海研制的第二代燃料動(dòng)力電池轎車“超越二號(hào)”也于2004年五月在北京的國際氫能大會(huì)上露面,但都還未能得到廣泛的推廣應(yīng)用。雖然近年來蓄電池自身的技術(shù)有了不小的進(jìn)步,但作為其能量再次補(bǔ)充的充電器的發(fā)展非常緩慢,傳統(tǒng)的常規(guī)充電時(shí)間過長,快速充電技術(shù)至今仍未能完全解決,嚴(yán)重地制約著電動(dòng)汽車的發(fā)展。自鉛酸蓄電池問世以來,由于各種技術(shù)條件的限制,所采用的充電方法均未能遵從電池內(nèi)部的物理化學(xué)規(guī)律,使整個(gè)充電過程存在著嚴(yán)重的過充電和析氣等現(xiàn)象,充電效率低。電動(dòng)汽車用動(dòng)力蓄電池與一般蓄電池還有所不同,它以較長時(shí)間中等電流持續(xù)放電為主,間或以大電流放電,用于起動(dòng)、加速或爬坡。一般來說,電動(dòng)汽車用蓄電池多工作在深度充放電工作狀態(tài)。因此,對(duì)電動(dòng)汽車用動(dòng)力蓄電池的快速充電提出了不同于常規(guī)電池的要求,它必須具有充電時(shí)間短、對(duì)蓄電池使用壽命影響小以及充滿電判斷準(zhǔn)確的特點(diǎn)。1脈沖快速充電法的理論基礎(chǔ)理論和實(shí)踐證明,蓄電池的充放電是一個(gè)復(fù)雜的電化學(xué)過程。一般地說,充電電流在充電過程中隨時(shí)間呈指數(shù)規(guī)律下降,不可能自動(dòng)按恒流或恒壓充電。充電過程中影響充電的因素很多,諸如電解液的濃度、極板活性物的濃度、環(huán)境溫度等的不同,都會(huì)使充電出現(xiàn)很大的差異。隨著放電狀態(tài)、使用和保存期的不同,即使是相同型號(hào)、相同容量的同類蓄電池的充電也大不相同。1972年,美國科學(xué)家馬斯在第二屆世界電動(dòng)汽車年會(huì)上提出了著名的馬斯三定律,即1)關(guān)于任何給定的放電電流,蓄電池充電時(shí)的電流接受比a與電池放出的容量的平方根成反比,即
式中:K1為放電電流常數(shù),視放電電流的大小而定;C為蓄電池放出的容量。由于蓄電池的初始接受電流Io=aC,所以
2)關(guān)于任何給定的放電量,蓄電池充電電流接受比a與放電電流Id的對(duì)數(shù)成正比,即
式中:K2為放電量常數(shù),視放電量的多少而定;k為計(jì)算常數(shù)。3)蓄電池在以不同的放電率放電后,其最終的允許充電電流It(接受能力)是各個(gè)放電率下的允許充電電流的總和,即:
式中:I1、I2、I3、I4…為各個(gè)放電率下的允許充電電流。綜合馬斯三定律,可以推出,蓄電池的總電流接受比可表示為
式中:Ct=C1+C2+C3+C4+…為各次放電量的總和,即蓄電池放出的全部電量。馬斯三定律說明,在充電過程中,當(dāng)充電電流接近蓄電池固有的微量析氣充電曲線時(shí),適時(shí)地對(duì)電池進(jìn)行反向大電流瞬間放電,以消除電池的極化現(xiàn)象,可以提高蓄電池的充電接受能力,如圖1所示。也就是說通過反向大電流放電,可以使蓄電池的可接受電流曲線不斷右移,同時(shí)其陡度不斷增大,即α值增大,從而大大提高充電速度,縮短充電時(shí)間。
馬斯三定律的提出至今已有30多年,目前為止這一理論雖未得到有效的驗(yàn)證,但在理論上和實(shí)踐上都證明了它的可行性,脈沖快速充電法正是基于這個(gè)理論而提出的一種快速充電方式。2充電方法設(shè)計(jì)基于上述理論,并考慮到鉛酸蓄電池自身的一些特性,本文介紹的快速充電裝置所采用的充電方法將整個(gè)充電過程分為了預(yù)充電、脈沖快速充電、補(bǔ)足充電、浮充電4個(gè)階段,如圖2所示。根據(jù)蓄電池充電前的殘余電量,進(jìn)入不同的充電階段。
2.1預(yù)充電對(duì)長期不用的電池、新電池或在充電初期已處于深度放電狀態(tài)的蓄電池充電時(shí),一開始就采用快速充電會(huì)影響電池的壽命。為了防止這一問題要先對(duì)蓄電池實(shí)行穩(wěn)定小電流充電,使電池電壓上升,當(dāng)電池電壓上升到能接受大電流充電的閾值時(shí)再進(jìn)行大電流快速充電。2.2脈沖快速充電在快速充電過程中,采用分級(jí)定電流脈沖快速充電法,將充電電流分成三級(jí),如圖3所示。開始充電時(shí)采用大電流,隨著電池容量的新增,電壓逐漸升高,電流等級(jí)開始降低,使充電電流的脈沖幅度和寬度隨蓄電池端電壓的升高而分級(jí)減小。采用這種方法可以消除充電接近充滿時(shí)易出現(xiàn)的振蕩現(xiàn)象及過充電問題。在脈沖快速充電過程中,電池電壓上升較快,當(dāng)電壓上升至補(bǔ)足充電電壓閾值時(shí),轉(zhuǎn)入補(bǔ)足充電階段。2.3補(bǔ)足充電快速充電終止后,電池并不一定充足電,為了保證電池充入100%的電量,對(duì)電池還要進(jìn)行補(bǔ)足充電。此階段充電采用恒壓充電,可使電池容量快速恢復(fù)。此時(shí)充電電流逐漸減小,當(dāng)電流下降至某一閾值時(shí),轉(zhuǎn)入浮充階段。2.4浮充電此階段重要用來補(bǔ)充蓄電池自放電所消耗的能量,只要電池接在充電器上并且充電器接通電源,充電器就會(huì)給電池不斷補(bǔ)充電荷,這樣可使電池總處于充足電狀態(tài)。此時(shí)也標(biāo)志著充電過程已結(jié)束。
3充電電路設(shè)計(jì)3.1充放電硬件電路設(shè)計(jì)主電路采用半橋功率變換電路,如圖4所示。在半橋式功率變換器中,功率管所承受的最大電壓與正激式或反激式變換器中功率管承受的電壓相比要小。這樣可以選用耐壓值低的MOSFET,使導(dǎo)通電阻相應(yīng)下降,同時(shí)也降低了導(dǎo)通損耗。用集成pWM控制芯片SG3525結(jié)合半橋式功率變換電路共同組成充電器的功率變換部分。
與單片機(jī)相連的檢測電路的充電電壓由分壓精密電阻取得,經(jīng)過相應(yīng)的放大后送至單片機(jī)的A/D口;充電電流經(jīng)過精密電阻采樣、放大,然后也送至單片機(jī)的A/D口;蓄電池溫度經(jīng)過溫度傳感器,將對(duì)應(yīng)的電壓量放大后送至單片機(jī)的A/D口。3.2軟件設(shè)計(jì)本系統(tǒng)軟件部分的重要功能是,通過對(duì)蓄電池狀態(tài)的檢測,使充電轉(zhuǎn)入不同的充電階段;進(jìn)入不同的充電階段后,通過一定的算法,改變SG3525的輸出脈沖寬度,實(shí)現(xiàn)各個(gè)不同階段的充電;暫停充電和終止充電的控制;并顯示充電器當(dāng)前狀態(tài)。軟件流程圖如圖5所示。
4結(jié)語本文介紹的單片機(jī)控制的鉛酸蓄電池脈沖快速充電系統(tǒng),采用分級(jí)定電流脈沖快速充電法,在整個(gè)充電過程中,隨著充入電池電量的新增逐步降低充電電流等級(jí),使鉛酸蓄電池的充電接受率顯著提高,充電時(shí)間大大縮短,且減小了對(duì)電池壽命的影響。電動(dòng)汽車不斷發(fā)展的同時(shí)也在推動(dòng)蓄電池自身性能的不斷提高,還有電力電子器件的發(fā)展以及計(jì)算機(jī)控制在工業(yè)上的廣泛應(yīng)用,為適應(yīng)不同用戶及部門的要求,各種智能化的充電設(shè)備也正在興起。參考文獻(xiàn)[1]王兆安,黃俊.電力電子技術(shù)[M].北京:機(jī)械工業(yè)出版社,2000.[2]徐寧,杜少武.電動(dòng)汽車用智能型快速充電器的研制[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版).2001,24(1).[3]王喜瑜,丁軍,周希德.電動(dòng)汽車動(dòng)力蓄電池快速充電關(guān)鍵技術(shù)探究[J].北方交通大學(xué)學(xué)報(bào),1997,21(4).[4]徐杭田,董國保,楊林.船用蓄電池快速充電技術(shù)的改進(jìn)[J].機(jī)電設(shè)備2000(1).
下一篇:快速充放電柔性鋰離子電池成果問世