鉅大LARGE | 點擊量:4131次 | 2018年11月23日
簡述鋰離子電池的回收處理技術(shù)
廢舊鋰離子電池的回收處理過程主要包括預(yù)處理、二次處理和深度處理。由于廢舊電池中仍殘留部分電量,所以預(yù)處理過程包括深度放電過程、破碎、物理分選;二次處理的目的在于實現(xiàn)正負極活性材料與基底的完全分離,常用熱處理法、有機溶劑溶解法、堿液溶解法以及電解法等來實現(xiàn)二者的完全分離;深度處理主要包括浸出和分離提純2個過程,提取出有價值的金屬材料。按提取工藝分類,電池的回收方法主要可分為:干法回收、濕法回收和生物回收3大類技術(shù)。
1.干法回收
干法回收是指不通過溶液等媒介,直接實現(xiàn)材料或有價金屬的回收。其中,主要使用的方法有物理分選法和高溫?zé)峤夥ā?br/>
(1)物理分選法
物理分選法是指將電池拆解分離,對電極活性物、集流體和電池外殼等電池組分經(jīng)破碎、過篩、磁選分離、精細粉碎和分類,從而得到有價值的高含量的物質(zhì)。Shin等提出的一種利用硫酸和過氧化氫從鋰離子電池廢液中回收Li、Co的方法中,包括物理分離含金屬顆粒和化學(xué)浸出2個過程。
其中,物理分離過程包括破碎、篩分、磁選、細碎和分類。實驗利用一組旋轉(zhuǎn)和固定葉片的破碎機進行破碎,利用不同孔徑的篩子分類破碎物料,并利用磁力分離,做進一步處理,為后續(xù)化學(xué)浸出過程做準備。
Shu等在Zhang等、Lee等以及Saeki等研發(fā)的研磨技術(shù)和水浸除工藝的基礎(chǔ)上,開發(fā)一種利用機械化學(xué)方法從鋰硫電池廢料中回收鈷和鋰的新方法。該方法利用行星式球磨機在空氣中共同研磨鈷酸鋰(LiCoO2)與聚氯乙烯(PVC),以機械化學(xué)地方式形成Co和氯化鋰(LiCl)。
隨后,將研磨產(chǎn)物分散在水中以萃取氯化物。研磨促進了機械化學(xué)反應(yīng)。隨著研磨的進行,Co和Li的提取收率都得到提高。30min的研磨使得回收了超過90%的Co和近100%的鋰。同時,PVC樣品中約90%的氯已經(jīng)轉(zhuǎn)化為無機氯化物。
物理分選法的操作較簡單,但是不易完全分離鋰離子電池,并且在篩分和磁選時,容易存在機械夾帶損失,難以實現(xiàn)金屬的完全分離回收。
(2)高溫?zé)峤夥?br/>
高溫?zé)峤夥ㄊ侵笇⒔?jīng)過物理破碎等初步分離處理的鋰電池材料,進行高溫培燒分解,將有機粘合劑去除,從而分離鋰電池的組成材料。同時還可以使鋰電池中的金屬及其化合物氧化還原并分解,以蒸汽形式揮發(fā),然后再用冷凝等方法收集。
Lee等利用廢舊鋰離子電池制備LiCoO2時,采用了高溫?zé)峤夥āee等首先將LIB樣品在馬弗爐中100~150℃的環(huán)境下熱處理1h。其次,將經(jīng)熱處理的電池切碎以釋放電極材料。
樣品用專為該研究設(shè)計的高速粉碎機進行拆解,按照大小分類,大小范圍為1~50mm。然后,在爐中進行2步熱處理,第一次在100~500℃下熱處理30min,第二次在300~500℃下熱處理1h,通過振動篩選將電極材料從集流體中釋放出來。接下來,通過在500~900℃的溫度下燒0.5~2h,燒掉碳和粘合劑,獲得陰極活性材料LiCoO2。實驗數(shù)據(jù)表明,碳和粘合劑在800℃時被燒掉。
高溫?zé)峤夥ㄌ幚砑夹g(shù)工藝簡單,操作方便,在高溫環(huán)境下反應(yīng)速度快,效率高,能夠有效去除粘合劑;并且該方法對原料的組分要求不高,比較適合處理大量或較復(fù)雜的電池。
但是該方法對設(shè)備要求較高;在處理過程中,電池的有機物分解會產(chǎn)生有害氣體,對環(huán)境不友好,需要增加凈化回收設(shè)備,吸收凈化有害氣體,防止產(chǎn)生二次污染。因此,該方法的處理成本較高。
2.濕法回收
濕法回收工藝是將廢棄電池破碎后溶解,然后利用合適的化學(xué)試劑,選擇性分離浸出溶液中的金屬元素,產(chǎn)出高品位的鈷金屬或碳酸鋰等,直接進行回收。濕法回收處理比較適合回收化學(xué)組成相對單一的廢舊鋰電池,其設(shè)備投資成本較低,適合中小規(guī)模廢舊鋰電池的回收。因此,該方法目前使用也比較廣泛。
(1)堿-酸浸法
由于鋰離子電池的正極材料不會溶于堿液中,而基底鋁箔會溶解于堿液中,因此該方法常用來分離鋁箔。張陽等在回收電池中的Co和Li時,預(yù)先用堿浸除鋁,然后再使用稀酸液浸泡破壞有機物與銅箔的粘附。但是堿浸法并不能完全除去PVDF,對后續(xù)的浸出存在不利影響。
鋰離子電池中的大部分正極活性物質(zhì)都可溶解于酸中,因此可以將預(yù)先處理過的電極材料用酸溶液浸出,實現(xiàn)活性物質(zhì)與集流體的分離,再結(jié)合中和反應(yīng)的原理對目的金屬進行沉淀和純化,從而達到回收高純組分的目的。
酸浸法利用的酸溶液有傳統(tǒng)的無機酸,包括鹽酸、硫酸和硝酸等。但是由于在利用無機強酸浸出的過程中,常常會產(chǎn)生氯氣(Cl2)和三氧化硫(SO3)等對環(huán)境有影響的有害氣體,因此研究人員嘗試利用有機酸來處理廢舊鋰電池,如檸檬酸、草酸、蘋果酸、抗壞血酸、甘氨酸等。Li等利用鹽酸溶解回收的電極。
由于酸浸過程的效率可能受氫離子(H+)濃度、溫度、反應(yīng)時間和固液比(S/L)的影響,為了優(yōu)化酸浸工藝的操作條件,設(shè)計了實驗來探討反應(yīng)時間、H+濃度和溫度的影響。實驗數(shù)據(jù)表明,當(dāng)溫度為80℃時,H+濃度為4mol/L,反應(yīng)時間為2h,浸出效率最高,其中,電極材料中97%的Li和99%的Co被溶解。周濤等采用蘋果酸作浸出劑和雙氧水作還原劑對預(yù)處理得到的正極活性物質(zhì)進行還原浸出,并通過研究不同反應(yīng)條件對蘋果酸浸出液中Li、Co、Ni、Mn浸出率的影響,從而找出最佳反應(yīng)條件。
研究數(shù)據(jù)表明,當(dāng)溫度為80℃,蘋果酸濃度為1.2mol/L,液液體積比為1.5%,固液比40g/L,反應(yīng)時間30min時,利用蘋果酸浸出的效率最高,其中Li、Co、Ni、Mn浸出率分別達到了98.9%,94.3%,95.1%和96.4%。但是,相較于無機酸,利用有機酸浸出成本較高。
(2)有機溶劑萃取法
有機溶劑萃取法利用“相似相容”的原理,使用合適的有機溶劑,對有機粘結(jié)劑進行物理溶解,從而減弱材料與箔片的粘合力,對二者進行分離。
Contestabile等在回收處理鈷酸鋰電池時,為了更好地回收電極的活性材料,利用N-甲基吡咯烷酮(NMP)對組分進行選擇性分離。NMP是PVDF的良好溶劑(溶解度大約為200g/kg),并且其沸點較高,約200℃。研究利用NMP在大約100℃下對活性材料處理1h,有效實現(xiàn)了薄膜與其載體的分離,并因此通過將其從NMP(N-甲基吡咯烷酮)溶液中簡單地過濾出來,從而回收金屬形式的Cu和Al。該方法另一個好處是回收的Cu和Al兩種金屬在充分清潔后可以直接重新使用。
此外,回收的NMP可以循環(huán)使用。因為其在PVDF中的高溶解度,所以可以被多次重復(fù)使用。Zhang等在回收鋰離子電池用陰極廢料時,采用三氟乙酸(TFA)將陰極材料與鋁箔分離。實驗所用的廢舊鋰離子電池使用聚四氟乙烯(PTFE)作為有機粘合劑,系統(tǒng)地研究了TFA濃度、液固比(L/S)、反應(yīng)溫度和時間對陰極材料和鋁箔分離效率的影響。實驗結(jié)果表明,在質(zhì)量分數(shù)為15的TFA溶液中,液固比為8.0mL/g,反應(yīng)溫度為40℃時,在適當(dāng)?shù)臄嚢柘路磻?yīng)180min,陰極材料可以完全分離。
鋰離子電池回收處理技術(shù)
采用有機溶劑萃取法來分離材料與箔片的實驗條件比較溫和,但是有機溶劑具有一定的毒性,對操作人員的身體健康可能會產(chǎn)生危害。同時,由于不同廠家制作鋰離子電池的工藝不同,選擇的粘結(jié)劑有所差異,因此針對不同的制作工藝,廠家在回收處理廢舊鋰電池時,需要選擇不同的有機溶劑。此外,對于工業(yè)水平的大規(guī)?;厥仗幚聿僮?,成本也是一個重要的考量。因此,選擇一種來源廣泛、價格適宜、低毒無害、適用性廣的溶劑非常重要。
(3)離子交換法
離子交換法是指用離子交換樹脂對要收集的金屬離子絡(luò)合物的吸附系數(shù)的不同來實現(xiàn)金屬分離提取。王曉峰等在將電極材料經(jīng)過酸浸處理過后,在溶液中加入適量氨水,調(diào)節(jié)溶液的pH值,與溶液中的金屬離子發(fā)生反應(yīng),生成[Co(NH3)6]2+,[Ni(NH3)6]2+等絡(luò)合離子,并連續(xù)向溶液中通入純氧氣進行氧化。
然后,使用不同濃度的硫酸氨溶液反復(fù)通過弱酸性陽離子交換樹脂,分別選擇性的將離子交換樹脂上的鎳絡(luò)合物和三價鈷氨絡(luò)合物洗脫下來。最后使用5%的H2SO4溶液將鈷絡(luò)合物完全洗脫,同時使陽離子交換樹脂再生,并利用草酸鹽分別將洗脫液中的鈷、鎳金屬回收。離子交換法的工藝簡單,比較容易操作。
3.生物回收
Mishra等利用無機酸和嗜酸氧化亞鐵硫桿菌從廢舊鋰離子電池中浸出金屬,并利用S和亞鐵離子(Fe2+),在浸出介質(zhì)中生成H2SO4、Fe3+等代謝產(chǎn)物。這些代謝物幫助溶解廢電池中的金屬。研究發(fā)現(xiàn)鈷的生物溶解速度比鋰快。隨著溶解過程的進行,鐵離子與殘余物中的金屬發(fā)生反應(yīng)而沉淀,導(dǎo)致溶液中的亞鐵離子濃度減少,并隨著廢物樣品中金屬濃度增加,細胞的生長被阻止,溶解速率變慢。此外,較高的固/液比也影響金屬溶解的速率。
Zeng等利用嗜酸氧化亞鐵硫桿菌生物浸出廢舊鋰離子電池中的金屬鈷,與Mishra等不同,該研究以銅作為催化劑,分析銅離子對嗜酸氧化亞鐵硫桿菌對LiCoO2生物浸出的影響。結(jié)果表明,幾乎所有的鈷(99.9%)在Cu離子濃度為0.75g/L時,生物浸出6天后進入溶液,而在沒有銅離子的情況下,經(jīng)過10天的反應(yīng)時間,僅有43.1%的鈷溶解。在銅離子存在的情況下,廢鋰離子電池的鈷溶解效率提高。此外,Zeng等還研究了催化機理,解釋了銅離子對鈷的溶解作用,其中LiCoO2與銅離子發(fā)生陽離子交換反應(yīng),在樣品表面形成鈷酸銅(CuCo2O4),易被鐵離子溶解。
生物浸出法的成本低,回收效率高,污染和消耗少,對環(huán)境的影響也較小,并且微生物可以重復(fù)利用。但是高效微生物菌類培養(yǎng)難,處理周期長,浸出條件的控制等是該方法需要的幾大難題。
4.聯(lián)合回收方法
廢舊鋰電池回收工藝各有優(yōu)劣,目前已經(jīng)有聯(lián)合并優(yōu)化多種工藝的回收方法研究,以充分發(fā)揮將各種回收方法的優(yōu)勢,實現(xiàn)經(jīng)濟利益最大化。
下一篇:新能源汽車電池的發(fā)展