鉅大LARGE | 點擊量:1554次 | 2019年09月06日
激光在動力鋰電池制造中的應用
自1990年問世以來,鋰電池因其能量密度高、電壓高、環(huán)保、壽命長以及可快速充電等優(yōu)點,深受3C數碼、動力工具等行業(yè)的青睞,其對新能源汽車行業(yè)的貢獻尤為突出。作為提供新能源汽車動力來源的鋰電池產業(yè),市場潛力巨大,是國家戰(zhàn)略發(fā)展的重要一環(huán),預計未來5-10年,產業(yè)規(guī)模有望突破1600億元。
動力電池作為新能源汽車的核心部件,其品質直接決定了整車性能。鋰電池制造設備一般為前端設備、中端設備、后端設備三種,其設備精度和自動化水平將會直接影響產品的生產效率和一致性。而激光加工技術作為一種替代傳統焊接技術已廣泛應用于鋰電制造設備之中。
本文通過激光在動力電池行業(yè)中的應用情況,闡述了激光焊接的工藝特點,分析了鋁合金激光焊接難點以及焊接模式對焊接質量的影響,列舉了方形動力電池及電池PACK工藝特點及設備發(fā)展趨勢。
激光焊接工藝
從鋰電池電芯的制造到電池PACK成組,焊接都是一道很重要的制造工序,鋰電池的導電性、強度、氣密性、金屬疲勞和耐腐蝕性,是典型的電池焊接質量評價標準。
焊接方法和焊接工藝的選用,將直接影響電池的成本、質量、安全以及電池的一致性。在眾多焊接方式中,激光焊接以如下優(yōu)勢脫穎而出:首先,激光焊接能量密度高、焊接變形小、熱影響區(qū)小,可以有效地提高制件精度,焊縫光滑無雜質、均勻致密、無需附加的打磨工作;其次,激光焊接可精確控制,聚焦光點小,高精度定位,配合機械手臂易于實現自動化,提高焊接效率,減少工時,降低成本;另外,激光焊接薄板材或細徑線材時,不會像電弧焊接那樣容易受到回熔的困擾。
電池的結構通常包含多種材料,如鋼、鋁、銅、鎳等,這些金屬可能被制成電極、導線,或是外殼;因此,無論是一種材料之間或是多種材料之間的焊接,均對焊接工藝提出了較高要求。激光焊接的工藝優(yōu)勢就在于可以焊接的材質種類廣泛,能夠實現不同材料之間的焊接。
工藝難點
動力電池電芯的制造由于遵循“輕便”原則,通常會采用較“輕”的鋁材質,而且還要做得更“薄”,一般殼、蓋、底的厚度基本都要求達到1.0mm以下,目前一些主流廠家的基本材料厚度均在0.8mm左右。據統計,鋁合金材料的電池殼體占整個動力電池的90%以上。
鋁材焊接的難點在于鋁合金對激光束的高初始反射率及其本身的高導熱性,使得鋁合金在未熔化前對激光的吸收率低,由于鋁的電離能低,焊接過程中光致等離子體不易于擴散,使得焊接穩(wěn)定性差。另外,焊接過程中合金元素的燒損,使鋁合金焊接接頭的力學性能下降。由于焊接過程中氣孔敏感性高,焊接時不可避免地會出現一些問題缺陷,其中最主要的是氣孔和熱裂紋。鋁合金的激光焊接過程中產生的氣孔主要有兩類:氫氣孔和匙孔破滅產生的氣孔。由于激光焊接的冷卻速度太快,氫氣孔問題更加嚴重,并且在激光焊接中還多了一類由于小孔的塌陷而產生的孔洞。
下一篇:如何讓充電電池延長壽命 避免意外