鉅大LARGE | 點擊量:1141次 | 2021年07月21日
高性能納米磷酸鐵鋰的合成研究取得進展,更能滿足鋰離子電池儲能的需求
最近,我國科學(xué)院金屬研究所研究員王曉輝課題組與南京特種航天大學(xué)教授朱孔軍合作,在深入理解LaMer形核生長機制的基礎(chǔ)上,通過減小形核窗口時間來增大形核速率,采用微波水熱合成法在純水的合成環(huán)境中制備出納米LiFePO4。同時利用沉淀劑將濾液中最有價值的LiOH回收再利用,鋰源的有效利用率超過了90%,大幅度降低了加工成本。
電動汽車的心臟是由電池或燃料動力電池驅(qū)動的電動機。隨著電動汽車需求的新增,對高品質(zhì)電池的需求也不斷提高。鋰離子電池作為電池技術(shù)發(fā)展的首選,其正極材料是決定電池性能的關(guān)鍵部件之一。LiFePO4同時具有優(yōu)越的熱穩(wěn)定性、高可逆性和可接受的工作電壓(3.45Vvs.Li+/Li),作為正極性材料具有顯著的競爭優(yōu)點。此前已發(fā)表文章多采用溶劑熱法制備納米LiFePO4,產(chǎn)物具有良好的電化學(xué)性能,但該法的產(chǎn)率低、成本過高,無法實現(xiàn)規(guī)模化加工。與溶劑熱法相比,水熱法制備LiFePO4成本較低,但是產(chǎn)物電化學(xué)性能差。而且,無論溶劑熱還是水熱合成,由于受到反應(yīng)的局限性(3LiOH+FeSO4+H3PO4=LiFePO4+Li2SO4),鋰源的有效利用不超過三分之一。因此,要怎么樣采用水熱法制備具有高性能的納米LiFePO4并且能循環(huán)利用鋰源,不僅是實現(xiàn)規(guī)?;疅岱ㄖ苽浼{米LiFePO4的技術(shù)難題,也是一個緊要的科學(xué)問題。
最近,我國科學(xué)院金屬研究所研究員王曉輝課題組與南京特種航天大學(xué)教授朱孔軍合作,在深入理解LaMer形核生長機制的基礎(chǔ)上,通過減小形核窗口時間來增大形核速率,采用微波水熱合成法在純水的合成環(huán)境中制備出納米LiFePO4。同時利用沉淀劑將濾液中最有價值的LiOH回收再利用,鋰源的有效利用率超過了90%,大幅度降低了加工成本。由該辦法制備的納米LiFePO4具有迄今為止最高的產(chǎn)率(1.3mol/L),且表現(xiàn)出優(yōu)良的電化學(xué)性能,在0.1C倍率下放電比容量為167mAhg-1,3C倍率下充/放電循環(huán)1000次后,仍能保持初始容量的88%,可以滿足大規(guī)模儲能的實際使用。該工作率先實現(xiàn)了高性能納米LiFePO4在純水的合成環(huán)境中的綠色高效合成,將有力推動其規(guī)模化加工。相關(guān)結(jié)果發(fā)表在近日出版的《綠色化學(xué)》(GreenChemistry,2018,20,5215-5223)雜志上。
圖1經(jīng)典的LaMer形核和生長機制以及試驗結(jié)果。(a)經(jīng)典LaMer機理,顆粒在溶液中成核和生長過程中單體濃度變化的示意圖。(b)三個具有高斯分布的形核函數(shù)。形核函數(shù)的寬度()對應(yīng)形核時間窗口。(c)微波加熱和油浴加熱兩種加熱模式下的原位溫度與時間曲線。(d)由兩種不同的加熱模式制備的LiFePO4沿[100]或[010]方向的尺寸統(tǒng)計。微波加熱的尺寸為63nm,而在常規(guī)油浴加熱的情況下,尺寸為105nm。
圖2LiFePO4納米晶水熱合成路線及鋰回收示意圖。以LiOH、FeSO4和H3PO4為原料制備納米LiFePO4。用ba(OH)2做沉淀劑與濾液反應(yīng),隨后進行固液分離,回收LiOH。插圖為LiFePO4的TEM照片。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
圖3水熱/溶劑熱合成辦法制備LiFePO4單位體積產(chǎn)率的比較。插圖為本工作中合成的LiFePO4的光學(xué)照片。
圖4原始的O-LiFePO4/C和回收的R-LiFePO4/C的電化學(xué)性能曲線。(a)O-LiFePO4/C在0.1–10C不同倍率范圍內(nèi)的典型充放電曲線。(b)倍率性能。(c)O-LiFePO4/C和R-LiFePO4/C在3C倍率下的長循環(huán)穩(wěn)定性。3C對應(yīng)的充電或放電時間為20分鐘。
鋰離子電池
“鋰離子電池”,是一類由鋰金屬或鋰合金為負極材料、使用非水電解質(zhì)溶液的電池。1912年鋰金屬電池最早由GilbertN.Lewis提出并研究。20世紀70年代時,M.S.Whittingham提出并開始研究鋰離子電池。由于鋰金屬的化學(xué)特性非?;顫?,使得鋰金屬的出產(chǎn)、保存、使用,對環(huán)境要求非常高。隨著科學(xué)技術(shù)的發(fā)展,今朝鋰離子電池已經(jīng)成為了主流。
鋰離子電池大致可分為兩類:鋰金屬電池和鋰離子電池。鋰離子電池不含有金屬態(tài)的鋰,并且是可以充電的???a href="/keywords/cddc/" class = "seo-anchor" data-anchorid=150 target="_blank">充電電池的第五代產(chǎn)品鋰金屬電池在1996年誕生,其安全性、比容量、自放電率和性能價格比均優(yōu)于鋰離子電池。由于其自身的高技術(shù)要求限制,今朝惟有少數(shù)幾個國家的公司在加工這種鋰金屬電池。
2018年十月,南開大學(xué)梁嘉杰、陳永勝教授課題組與江蘇師范大學(xué)賴超課題組合作成功制備了石墨烯三維多孔載體,可實現(xiàn)電池超高速充電,有望大幅延長鋰離子電池“壽命”。