鉅大LARGE | 點擊量:614次 | 2021年11月04日
誰將成為新一代電池?
新能源車產(chǎn)業(yè)看著花團錦簇,實際上像茶杯里的老鼠,看著透亮,前途不大。原因就在于電池的能量密度實在無法與傳統(tǒng)動力相比。幾乎全世界相關(guān)產(chǎn)業(yè)的科研力量都涉足了電池研究。突破了這一點,就突破了新能源車與傳統(tǒng)動力車之間的藩籬,剩下的路一馬平川。當然,神奇的自然規(guī)律不會讓我們那么容易得逞。
電池中可憐的電子遷移比例,決定了電池遠遠比不上汽油,柴油,丁烷,丙烷,天然氣,當然更比不上氫燃料——因為氫本身可以將全部的電子參加化學反應(yīng)。豐田的氫燃料汽車,從能量密度角度看,是完美的化學解決方法。它的難度在于龐大昂貴的基礎(chǔ)設(shè)施建設(shè)和吸附、儲存介質(zhì)——氣態(tài)的氫實在太活躍太危險了。
本田燃料動力鋰電池概念車FCVconcept
結(jié)果就是豐田率領(lǐng)自己的雁陣,在列島的孤立之境中曲高和寡地玩兒。氫燃料的科技門檻太高,以至于大家對燃料動力鋰電池在廣袤的大陸國家大規(guī)模應(yīng)用,有點缺乏信心。當然,除非豐田能想出更石破天驚的法子,解除大家對燃料動力鋰電池安全和成本的戒心。
無數(shù)聰明的頭腦和天量科研資金,仍然投入到電池研發(fā)中,盡管它的能量密度可憐。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
正如我們在高中化學中學到的,大多數(shù)物質(zhì)電子轉(zhuǎn)移的比例都很低。只有元素周期表的前兩行的輕原子有可能成為好的能量載體。除掉惰性氣體和氮(跟惰性氣體差不多的德性),還有熏死人的氟,只剩下氫(100%),碳(66%),硼(60%),鈹(50%),鋰(33%)——括號里是參加反應(yīng)的電子比例。
豐田氫燃料動力鋰電池概念車——FCVPlus
大家很容易發(fā)現(xiàn),最適合能量載體的仍然是碳和氫。碳氫化合物,不就是我們常用的汽油天然氣一類的燃料嗎?
出于排放考慮的電池,能選用的正負極材料,仍然必須在上述圈子里尋找。在可憐的能量密度提不上去的同時,我們還得操心別的事。
經(jīng)典派
電池技術(shù)已經(jīng)發(fā)展了百余年,早就過了爆發(fā)期。有關(guān)未來我們必須要有現(xiàn)實態(tài)度。支持電池發(fā)展的分子物理和化學分支,二戰(zhàn)以后沒有重大理論突破。我們見證了從鉛酸到鎳鎘、從鎳鎘到鎳氫、從鎳氫到現(xiàn)在的鋰離子的可充放電池發(fā)展歷程。這期間電池結(jié)構(gòu)沒有什么變化,可預見的未來也不會有。因此,不要想著爆個大新聞。
研究經(jīng)典電池的大多數(shù)機構(gòu)或者公司,都在正負極材料、電解液、隔膜上做文章。
特斯拉ModelS配高性能鈷酸鋰離子電池
倒退兩年,正極材料研究是熱點。除了特斯拉熱捧的鈷酸鋰之外,目前的其它鋰離子電池正極熱點材料,還有三元化合物Li(NiCoMn)O2、磷酸鐵鋰(LiFePO4)。然而由于壓實密度原因,采用這些材料的電池的容量并不如鈷酸鋰離子電池。為何人們還要大力研究?
ModelS電池與車架融為一體
鈷酸鋰離子電池好是好,只是由于熱失控的問題體積做不大?;谕瑯拥脑?,為追求大電量,要將眾多鈷酸鋰離子電池堆疊在一起。精確管理這些小電池,似乎成為控制技術(shù)的噩夢。特斯拉將它們劃分成數(shù)百個小單元分別控制。但過高的成本讓特斯拉缺乏追隨者。
前幾天在京高調(diào)召開公布會的微宏公司,用三元材料作正極,鈦酸鋰作負極,并對電解液和隔膜進行了獨到的設(shè)計。公司高層宣稱可以在300攝氏度時不陷入熱失控。
鋰空氣電池
除了還原劑令人頭痛,氧化劑的選擇也沒有什么余地。假如不用過渡金屬,鹵素也顯然不行,那就只能選氧與硫。鋰空氣電池(鋰、氧)與鋰硫電池都有很多人研究,但進展寥寥。除了IBM曾經(jīng)爆出過大新聞。
IBM旗下的“電池500”項目,致力于使鋰空氣電池商用化。和目前商用的重金屬氧化物作為陰極的鋰離子電池不同,鋰空氣電池的負極是泡在有機電解液里面的碳棒,反應(yīng)物則是空氣中的氧氣。
空氣理電池用途原理圖
這種反應(yīng)模式最大的優(yōu)點是無須自帶陰極氧化物,重量大大減輕,能量密度可以提升10倍,插電式電動汽車依靠這種電池可以一次行駛800公里,超過傳統(tǒng)動力車。不僅如此,鋰空氣電池也可以不進行充電,直接更換正負極卡盒,算是一種新型的燃料動力鋰電池。
既然使用空氣,該電池必須設(shè)計成開放系統(tǒng),電極和電解質(zhì)都暴露在空氣中,這使得人們始終無法維持這兩者的穩(wěn)定性,被當做陰極的碳棒會與電解質(zhì)出現(xiàn)各種意料之外的副反應(yīng),導致負極迅速劣化。無論“鋅空”到“鋰空”,都被嚴厲地批判過。
日本旭化成公司(AsahiKasei)和中央硝子公司(CentralGlass)在分離膜和電解液方面為該小組供應(yīng)支持。
該小組嘗試將碳棒換為昂貴的納米金陰極,將陰極反應(yīng)液換成更不容易參與陰極反應(yīng)的有機液體。并聲稱獲得“充放電高達數(shù)百次而性能下降不明顯”的鋰空氣電池。但距離商用化,仍然有“很長的路要走”。
為了防止負極出現(xiàn)枝晶,即鋰離子在負極表面無序生長,要加強捕獲鋰離子的手段。微宏公司也聲稱采用“多孔復合碳”作為負極材料,比表面積是傳統(tǒng)石墨的20倍以上,使鋰離子穩(wěn)定快速地遷移。
石墨烯
既然電池的正負極表面材料和結(jié)構(gòu)大有講究,為何不利用近來突飛猛進的納米技術(shù),用各種納米線、管、球、碗設(shè)計精細有序的表面結(jié)構(gòu)呢?
石墨烯就是其中的大新聞。盡管人們普遍對此懷有疑慮,因為聲稱以石墨烯為原料的鋰離子電池能量密度高達600wh/kg,是傳統(tǒng)動力鋰離子電池的5倍。一度有人將石墨烯技術(shù)當做解決新能源車續(xù)航問題的最終方法??上Вl也沒有在可控成本上復制試驗室成果。
單層或者2層石墨烯確實很神奇:最薄、最堅硬、最導熱、最導電,簡直就是上帝賦予的材料。但只是看上去很美。
韓國研發(fā)石墨烯超級電容電動汽車充電只需4分鐘
“接近完美”的石墨烯成本非常高昂,在2010年左右每克幾千元的售價,做成電池誰買?現(xiàn)在有公司聲稱將石墨烯的成本降低10倍,但仍然太貴。
即便不考慮成本,石墨烯很難分離到“完美”的1、2層,現(xiàn)有幾種方法分離出的石墨烯,充滿著官能團和瑕疵,層數(shù)不一,電化學性能遠不盡人意。
有人提出,像撒芝麻相同,在導電劑中摻點石墨烯。但馬上就有唱反調(diào)的人站出來說,石墨烯做導電劑分散性,還不如廉價的碳家族兄弟。石墨烯很容易把從正極出發(fā)的鋰離子通道給堵死,反映到宏觀層面,就是這種電池充一兩次電之后就廢了。
石墨烯做負極,理論上最多是石墨負極兩倍的容量,而硅做負極的理論容量近石墨的10倍,石墨烯就是成本低了也玩不過人家。事實上假如只考慮能量密度的話,金屬錫更適合作為負極材料。但到現(xiàn)在為止也就索尼推出過“錫電池”(Sonynexelion14430W1)。但是,錫電池的名氣遠不如還未做出成品的石墨烯電池。
固態(tài)電池
電解液只為了電子有序遷移供應(yīng)通路,本身并不能蓄能。假如沒有電解液,豈不能提高能量密度?能量載體的物質(zhì)密度,固體>液體>氣體。這是很容易理解的。
豐田在2010年展示出的固態(tài)電池技術(shù)
支持全固態(tài)電池的廠商聲稱,他們研發(fā)的對象規(guī)避了液態(tài)電池的種種弊端。作為技術(shù)關(guān)鍵,固態(tài)電池傳遞電荷的介質(zhì)(電介質(zhì))是各家電池公司的飯碗。盡管理論上可用氧化物、硫化物、氮化物作為固態(tài)電解質(zhì)材料,但無法實現(xiàn)液態(tài)電池那樣的傳導率。德國馬克思普朗克研究所開發(fā)的一種包含鋰、鍺、磷、硫的化合物,傳導率空前地高,但仍未能達到液態(tài)電池的水平。
所有固態(tài)電池廠家心知肚明的是,電池陰極和固態(tài)電解質(zhì)之間的轉(zhuǎn)移電阻過高,致使固態(tài)電池的功率密度還很低。同時,制造電池(其實是固態(tài)電介質(zhì))成本還非常高,因此距離商業(yè)化還有很長的路要走。
作為新能源技術(shù)領(lǐng)頭羊的豐田存在同樣的苦惱。公司高管必須做出決定,選擇看起來靠譜的那一個技術(shù)方向。在2010年,豐田推出了續(xù)航力達1000公里的電動汽車,用的就是固態(tài)電池技術(shù)。豐田還暢想在2020年將該技術(shù)商用化。但很快,豐田就將資金砸向氫燃料動力鋰電池技術(shù),圍繞氫制備和存儲,建立了龐大的專利群。豐田的宣傳機器轉(zhuǎn)而宣傳“美好氫時代”。
日本“超級電池”容量可達鋰離子電池7倍
豐田從電動轉(zhuǎn)向“氫動”,鑒于豐田的地位,此舉直接打擊了固態(tài)電池產(chǎn)業(yè)。一時間,幾乎所有廠家都本能地對固態(tài)電池持謹慎態(tài)度。當豐田莫名其轉(zhuǎn)向時,有些整車廠甚至還沒有搞清楚,固態(tài)電池的瓶頸到底在哪里。
曾得到巴斯夫和通用投資的創(chuàng)業(yè)公司Sakti3,聲稱研發(fā)出擁有1100WH/L的能量密度的固態(tài)電池——相當于主流鋰離子電池的4倍。Sakti3預測,固態(tài)電池電池的成本將“很快”降低至100美元/千瓦時。
而豐田曾公開表示,“在克服技術(shù)障礙的前提下”,全固態(tài)電池在2025年可以實現(xiàn)商業(yè)化,比鋰空氣電池早5年。但隨后豐田很快發(fā)現(xiàn),“技術(shù)障礙”是如此地強大,足以阻礙固態(tài)電池的技術(shù)前進腳步。豐田選擇了另一條道路,所謂的“2025年固態(tài)電池”再也沒有被提及。
讓所有創(chuàng)業(yè)公司迷惑、新能源整車廠家謹慎的是,眼下不存在競爭優(yōu)勝者。5年內(nèi)新能源汽車未來的產(chǎn)值將達到整個汽車工業(yè)的10%。在不能出現(xiàn)新王者的局面下,龐大的產(chǎn)值仍然依靠我們今天熟悉的鋰離子電池產(chǎn)業(yè)。有明確商業(yè)價值的新一代電池,會誕生在我們已經(jīng)提到的這些技術(shù)方法之中嗎?這是一個大概率事件。畢竟選擇就那么幾樣。不過,新技術(shù)很可能賦予它們新面目和可靠的競爭力。