鉅大LARGE | 點(diǎn)擊量:1727次 | 2019年08月09日
電池正極材料的一般制備方法
電池正極材料的一般制備方法
正極中表征離子輸運(yùn)性質(zhì)的重要參數(shù)是化學(xué)擴(kuò)散系數(shù),通常情況下,正極活性物質(zhì)中鋰離子的擴(kuò)散系數(shù)都比較低。鋰嵌入到正極材料或從正級(jí)材料中脫嵌,伴隨著晶相變化。因此,鋰離子電池的電極膜都要求很薄,一般為幾十微米的數(shù)量級(jí)。正極材料的嵌鋰化合物是鋰離子電池中鋰離子的臨時(shí)儲(chǔ)存容器。為了獲得較高的單體電池電壓,傾向于選擇高電勢(shì)的嵌鋰化合物。
正極材料應(yīng)滿足:
1)在所要求的充放電電位范圍內(nèi),具有與電解質(zhì)溶液的電化學(xué)相容性;
2)溫和的電極過程動(dòng)力學(xué);
3)高度可逆性;
4)全鋰化狀態(tài)下在空氣中的穩(wěn)定性。
研究的熱點(diǎn)主要集中在層狀LiMO2和尖晶石型LiM2O4結(jié)構(gòu)的化合物及復(fù)合兩種M(M為Co,Ni,Mn,V等過渡金屬離子)的類似電極材料上。作為鋰離子電池的正極材料,Li+離子的脫嵌與嵌入過程中結(jié)構(gòu)變化的程度和可逆性決定了電池的穩(wěn)定重復(fù)充放電性。正極材料制備中,其原料性能和合成工藝條件都會(huì)對(duì)最終結(jié)構(gòu)產(chǎn)生影響。多種有前途的正極材料,都存在使用循環(huán)過程中電容量衰減的情況,這是研究中的首要問題。已商品化的正極材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它們作為鋰離子電池正極材料各有優(yōu)劣。鋰鈷氧為正極的鋰離子電池具有開路電壓高,比能量大,循環(huán)壽命長(zhǎng),能快速充放電等優(yōu)點(diǎn),但安全性差;鋰鎳氧較鋰鈷氧價(jià)格低廉,性能與鋰鈷氧相當(dāng),具有較優(yōu)秀的嵌鋰性能,但制備困難;而鋰錳氧價(jià)格更為低廉,制備相對(duì)容易,而且其耐過充安全性能好,但其嵌鋰容量低,并且充放電時(shí)尖晶石結(jié)構(gòu)不穩(wěn)定。從應(yīng)用前景來(lái)看,尋求資源豐富、價(jià)廉、無(wú)公害,還有在過充電時(shí)對(duì)電壓控制和電路保護(hù)的要求較低等優(yōu)點(diǎn)的,高性能的正極材料將是鋰離子電池正極材料研究的重點(diǎn)。國(guó)外有報(bào)道LiVO2亦能形成層狀化合物,可作為正極電極材料[9]。從這些報(bào)道看出,雖然電極材料化學(xué)組成相同,但制備工藝發(fā)生變化后,其性能改變較多。成功的商品化電極材料在制備工藝上都有其獨(dú)到之處,這是國(guó)內(nèi)目前研究的差距所在。
各種制備方法優(yōu)缺點(diǎn)列舉如下。
1)固相法一般選用碳酸鋰等鋰鹽和鈷化合物或鎳化合物研磨混合后,進(jìn)行燒結(jié)反應(yīng)[10]。此方法優(yōu)點(diǎn)是工藝流程簡(jiǎn)單,原料易得,屬于鋰離子電池發(fā)展初期被廣泛研究開發(fā)生產(chǎn)的方法,國(guó)外技術(shù)較成熟;缺點(diǎn)是所制得正極材料電容量有限,原料混合均勻性差,制備材料的性能穩(wěn)定性不好,批次與批次之間質(zhì)量一致性差。
2)絡(luò)合物法用有機(jī)絡(luò)合物先制備含鋰離子和鈷或釩離子的絡(luò)合物前驅(qū)體,再燒結(jié)制備。該方法的優(yōu)點(diǎn)是分子規(guī)?;旌希牧暇鶆蛐院托阅芊€(wěn)定性好,正極材料電容量比固相法高,國(guó)外已試驗(yàn)用作鋰離子電池的工業(yè)化方法,技術(shù)并未成熟,國(guó)內(nèi)目前還鮮有報(bào)道。
3)溶膠凝膠法利用上世紀(jì)70年代發(fā)展起
來(lái)的制備超微粒子的方法,制備正極材料,該方法具備了絡(luò)合物法的優(yōu)點(diǎn),而且制備出的電極材料電容量有較大的提高,屬于正在國(guó)內(nèi)外迅速發(fā)展的一種方法。缺點(diǎn)是成本較高,技術(shù)還屬于開發(fā)階段[11]。
4)離子交換法Armstrong等用離子交換法制備的LiMnO2,獲得了可逆放電容量達(dá)270mA·h/g高值,此方法成為研究的新熱點(diǎn),它具有所制電極性能穩(wěn)定,電容量高的特點(diǎn)。但過程涉及溶液重結(jié)晶蒸發(fā)等費(fèi)能費(fèi)時(shí)步驟,距離實(shí)用化還有相當(dāng)距離。
正極材料的研究從國(guó)外文獻(xiàn)可看出,其電容量以每年30~50mA·h/g的速度在增長(zhǎng),發(fā)展趨向于微結(jié)構(gòu)尺度越來(lái)越小,而電容量越來(lái)越大的嵌鋰化合物,原材料尺度向納米級(jí)挺進(jìn),關(guān)于嵌鋰化合物結(jié)構(gòu)的理論研究已取得一定進(jìn)展,但其發(fā)展理論還在不斷變化中。困擾這一領(lǐng)域的鋰電池電容量提高和循環(huán)容量衰減的問題,已有研究者提出添加其它組分來(lái)克服的方法[12][13][14][15][16][17]。但就目前而言,這些方法的理論機(jī)理并未研究清楚,導(dǎo)致日本學(xué)者Yoshio.Nishi認(rèn)為,過去十年以來(lái)在這一領(lǐng)域?qū)嵸|(zhì)進(jìn)展不大[1],急須進(jìn)一步地研究。
下一篇:極片真空靜置箱、真空保存箱